[1] 蔡晓晴, 邓尧, 张亮, 等. 区块链原理及其核心技术[J]. 计算机学报, 2021, 44(1): 84-131.
CAI X Q, DENG Y, ZHANG L, et al. The principle and core technology of blockchain[J]. Journal of Computer Science, 2021, 44(1): 84-131.
[2] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42 (4): 481-494.
YUAN Y, WANG F Y. Blockchain: the state of the art and future trends[J]. Journal of Automation, 2016, 42 (4): 481-494.
[3] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[J]. Social Science Electronic Publishing, 2009: 213739669.
[4] DINH T T A, WANG J, CHEN G, et al. BLOCKBENCH: a framework for analyzing private blockchains[C]//Proceedings of the 2017 ACM International Conference on Management of Data, 2017: 1085-1100.
[5] 潘晨, 刘志强, 刘振, 等. 区块链可扩展性研究: 问题与方法[J]. 计算机研究与发展, 2018, 55(10): 2099-2110.
PAN C, LIU Z Q, LIU Z, et al. Research on scalability of blockchain technology: problems and methods[J]. Computer Research and Development, 2018, 55(10): 2099-2110.
[6] WANG S, DINH T T A, LIN Q, et al. Forkbase: an efficient storage engine for blockchain and forkable applications[J]. arXiv:1802.04949, 2018.
[7] BENTOV I, LEE C, MIZRAHI A, et al. Proof of activity: extending bitcoin’s proof of work via proof of stake [extended abstract] y[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(3): 34-37.
[8] KIAYIAS A, RUSSELL A, DAVID B, et al. Ouroboros: a provably secure proof-of-stake blockchain protocol[C]//Proceedings of the 37th Annual International Cryptology Conference, 2017: 357-388.
[9] PANG S, QI X, ZHANG Z, et al. Concurrency protocol aiming at high performance of execution and replay for smart contracts[J]. arXiv:1905.07169, 2019.
[10] XU X, SUN G, LUO L, et al. Latency performance modeling and analysis for hyperledger fabric blockchain network[J]. Information Processing & Management, 2021, 58(1): 102436.
[11] NGUYEN T S L, JOURJON G, POTOP-BUTUCARU M, et al. Impact of network delays on hyperledger fabric[C]//Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops, 2019: 222-227.
[12] THAKKAR P, NATHAN S, VISWANATHAN B. Performance benchmarking and optimizing hyperledger fabric blockchain platform[C]//Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2018: 264-276.
[13] CHACKO J A, MAYER R, JACOBSEN H A. Why do my blockchain transactions fail? a study of hyperledger fabric [J]. arXiv:2103.04681, 2021.
[14] THAKKAR P, NATARAJAN S. Scaling hyperledger fabric using pipelined execution and sparse peers[J]. arXiv:2003. 05113, 2020.
[15] GORENFLO C, LEE S, GOLAB L, et al. FastFabric: scaling hyperledger fabric to 20?000 transactions per second[C]//Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency, 2019: 455-463.
[16] SHARMA A, SCHUHKNECHT F M, AGRAWAL D, et al. Blurring the lines between blockchains and database systems: the case of hyperledger fabric[C]//Proceedings of the 2019 International Conference on Management of Data, 2019: 105-122.
[17] GORENFLO C, GOLAB L, KESHAV S. XOX fabric: a hybrid approach to blockchain transaction execution[C]//Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency, 2020: 1-9.
[18] RUAN P, LOGHIN D, TA Q T, et al. A transactional perspective on execute-order-validate blockchains[J]. arXiv:2003.10064, 2020.
[19] YUAN P, ZHENG K, XIONG X, et al. Performance modeling and analysis of a hyperledger-based system using GSPN[J]. Computer Communications, 2020, 153: 117-124.
[20] JIANG L, CHANG X, LIU Y, et al. Performance analysis of hyperledger fabric platform: a hierarchical model approach[J]. Peer-to-Peer Networking and Applications, 2020, 13(3): 1014-1025.
[21] SUKHWANI H, WANG N, TRIVEDI K S, et al. Performance modeling of hyperledger fabric (permissioned blockchain network)[C]//Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications, 2018: 1-8.
[22] HANG L, KIM D H. Optimal blockchain network construction methodology based on analysis of configurable components for enhancing hyperledger fabric performance[J]. Blockchain: Research and Applications, 2021, 2(1): 100009.
[23] CHUNG G, DESROSIERS L, GUPTA M, et al. Performance tuning and scaling enterprise blockchain applications[J]. arXiv:1912.11456, 2019.
[24] Hyperledger Fabric. What’s new in Hyperledger Fabric v2.x[EB/OL]. [2023-02-20].https://Hyperledger-fabric.readthedocs.io/en/latest/whatsnew.html.
[25] GRINSZTAJN L, OYALLON E, VAROQUAUX G. Why do tree-based models still outperform deep learning on tabular data?[J]. arXiv:2207.08815, 2022.
[26] 王青青. 到达率随时间变化带有顾客流失的队列模型[D]. 西安: 长安大学, 2020.
WANG Q Q. Queue models with time-varying arrival rates and customers loss[D]. Xi’an: Chang’an University, 2020.
[27] HUANG H, YUE Z, PENG X, et al. Elastic resource allocation against imbalanced transaction assignments in sharding-based permissioned blockchains[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(10): 2372-2385. |