[1] MCGINN D, BIRCH D, AKROYD D, et al. Visualizing dynamic Bitcoin transaction patterns[J]. Big Data, 2016, 4(2): 109-119.
[2] BISTARELLI S, SANTINI F. Go with the-bitcoin-flow, with visual analytics[C]//Proceedings of the 12th International Conference on Availability, Reliability and Security, 2017: 1-6.
[3] BATTISTA D, DONATO D, PATRIGNANI M, et al. Bitconeview: visualization of flows in the bitcoin transaction graph[C]//Proceedings of the IEEE Symposium on Visualization for Cyber Security, 2015: 1-8.
[4] CONTI M, GANGWAL A, RUJ S. On the economic significance of ransomware campaigns: a Bitcoin transactions perspective[J]. Computers & Security, 2018, 79: 162-189.
[5] PHAM T, LEE S. Anomaly detection in bitcoin network using unsupervised learning methods[J]. arXiv:1611.03941,2016.
[6] 沈蒙, 桑安琪, 祝烈煌, 等. 基于动机分析的区块链数字货币异常交易行为识别方法[J]. 计算机学报, 2021, 44(1): 193-208.
SHEN M, SANG A Q, ZHU L H, et al. Abnormal transaction behavior recognition based on motivation analysis in Blockchain digital currency[J]. Chinese Journal of Computers, 2021, 44(1): 193-208.
[7] HARLEV M A, SUN Y H, LANGENHELDT K C, et al. Breaking bad: de-anonymising entity types on the bitcoin blockchain using supervised machine learning[C]//Proceedings of the 51st Hawaii International Conference on System Sciences, 2018.
[8] WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics[C]//Proceedings of the SIGKDD Workshop on Anomaly Detection in Finance, Anchorage, AK, 2019.
[9] 朱会娟, 陈锦富, 李致远, 等. 基于多特征自适应融合的区块链异常交易检测方法[J]. 通信学报, 2021, 42(5): 41-50.
ZHU H J, CHEN J F, LI Z Y, et al. Block-chain abnormal transaction detection method based on adaptive multi-feature fusion[J]. Journal on Communications, 2021, 42(5): 41-50.
[10] CHAI Z, YOU S, YANG Y, et al. Can abnormality be detected by graph neural networks?[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, July, 2022: 1945-1951.
[11] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 5363-5370.
[12] ZHOU Z H, FENG J. Deep forest[J]. National Science Review, 2019, 6(1): 74-86.
[13] WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, 2016.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[15] SHI Y, HUANG Z, FENG S, et al. Masked label prediction: unified message passing model for semi-supervised classification[J]. arXiv:2009.03509,2020.
[16] HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
[17] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794.
[18] MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[19] VELICKOVIC P, CUCURULL G, Casanova A, et al. Graph attention networks[C]//ICLR 2018 Conference Blind Submission, 2018.
[20] KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems, 2017: 3146-3154. |