
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 62-77.DOI: 10.3778/j.issn.1002-8331.2410-0453
任瑞,黎英,杨雅莉,宋佩华
出版日期:2025-07-01
发布日期:2025-06-30
REN Rui, LI Ying, YANG Yali, SONG Peihua
Online:2025-07-01
Published:2025-06-30
摘要: 兴趣点(point of interest,POI)推荐可以缓解用户选择困难问题并提高位置服务商、商家的收益,是位置社交网络的研究热点之一。在已有的综述中缺乏数据问题对策的梳理、前沿算法的更新、算法性能对比实验等内容。因此对这一领域的研究进行系统性综述,从数据问题、算法技术和对比实验三个方面进行归纳总结。从POI数据问题角度分析并归纳出数据稀疏、数据依赖和数据隐私三大问题及其对应的解决方法;从算法所用技术角度将现有重要研究分为矩阵分解、编码器、图神经网络、注意力机制、生成模型五类,比较并总结其优劣;从算法性能对比角度出发,选取使用频度最高的召回率和精度作为评价指标,对五个代表性算法进行实验及评价;指出该领域所面临的挑战和未来研究方向。
任瑞, 黎英, 杨雅莉, 宋佩华. POI推荐算法研究综述[J]. 计算机工程与应用, 2025, 61(13): 62-77.
REN Rui, LI Ying, YANG Yali, SONG Peihua. Review of POI Recommendation Algorithms[J]. Computer Engineering and Applications, 2025, 61(13): 62-77.
| [1] SHI L, LUO J, ZHU C Y, et al. A survey on cross-media search based on user intention understanding in social networks[J]. Information Fusion, 2023, 91: 566-581. [2] SHANG S, GUO D H, LIU J J, et al. Finding regions of interest using location based social media[J]. Neurocomputing, 2016, 173: 118-123. [3] BRILHANTE I R, MACEDO J A, NARDINI F M, et al. On planning sightseeing Tours with TripBuilder[J]. Information Processing & Management, 2015, 51(2): 1-15. [4] LIU Y W, WU H P, REZAEE K, et al. Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in traveling enterprises[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 635-643. [5] TLILI T, KRICHEN S. A simulated annealing-based recommender system for solving the tourist trip design problem[J]. Expert Systems with Applications, 2021, 186: 115723. [6] 邢长征, 朱金侠, 孟祥福, 等. 兴趣点推荐方法研究综述[J]. 计算机科学, 2021, 48(S2): 176-183. XING C Z, ZHU J X, MENG X F, et al. Point-of-interest recommendation: a survey[J]. Computer Science, 2021, 48(S2): 176-183. [7] 陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478. CHEN J M, ZHANG W D. Review of point of interest recommendation systems in location-based social networks[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. [8] 郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1890-1902. GUO D H, ZHANG M K, JIA N, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1890-1902. [9] SAFAVI S, JALALI M, HOUSHMAND M. Toward point-of-interest recommendation systems: a critical review on deep-learning approaches[J]. Electronics, 2022, 11(13): 1998. [10] ISLAM M A, MOHAMMAD M M, DAS S S S, et al. A survey on deep learning based point-of-interest (POI) recommendations[J]. Neurocomputing, 2022, 472: 306-325. [11] 何颖, 王卓然, 周旭, 等. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. HE Y, WANG Z R, ZHOU X, et al. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2632-2639. [12] QIN Y R, GAO C, WANG Y, et al. Disentangling geographical effect for point-of-interest recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7883-7897. [13] ZHOU F, QIAN T J, MO Y H, et al. Uncertainty-aware heterogeneous representation learning in POI recommender systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 4522-4535. [14] WANG J, HUANG Z Y, LIU Z B. SQPMF: successive point of interest recommendation system based on probability matrix factorization[J]. Applied Intelligence, 2024, 54(1): 680-700. [15] SEYEDHOSEINZADEH K, RAHMANI H A, AFSHARCHI M, et al. Leveraging social influence based on users activity centers for point-of-interest recommendation[J]. Information Processing & Management, 2022, 59(2): 102858. [16] LI X Y, XU S H, JIANG T, et al. POI recommendation method of neural matrix factorization integrating auxiliary attribute information[J]. Mathematics, 2022, 10(19): 3411. [17] WANG D J, WAN F, YU D J, et al. Context-and category-aware double self-attention model for next POI recommendation[J]. Applied Intelligence, 2023, 53(15): 18355-18380. [18] CHEN J M, ZHANG W D. TeSP-TMF: a temporal-aware personalized POI recommendation approach based on potential preferences and grey relational analysis[J]. Electronic Commerce Research and Applications, 2023, 58: 101243. [19] ZHOU X, WANG Z R, LIU X J, et al. An improved context-aware weighted matrix factorization algorithm for point of interest recommendation in LBSN[J]. Information Systems, 2024, 122: 102366. [20] AN J M, JIANG W, LI G Y. Bidirectional trust-enhanced collaborative filtering for point-of-interest recommendation[J]. Sensors, 2023, 23(8): 4140. [21] 高丽, 杨立身. 多源异构签到数据中改进RNN的POI推荐[J]. 计算机工程与设计, 2022, 43(5): 1327-1334. GAO L, YANG L S. POI recommendation using improved RNN in multi-source heterogeneous sign-in data[J]. Computer Engineering and Design, 2022, 43(5): 1327-1334. [22] LANG C, WANG Z, HE K M, et al. POI recommendation based on a multiple bipartite graph network model[J]. The Journal of Supercomputing, 2022, 78(7): 9782-9816. [23] ZHANG S Z, BAI Z J, LI P, et al. Multi-graph convolutional network for fine-grained and personalized POI recommendation[J]. Electronics, 2022, 11(18): 2966. [24] LIU J T, YI H W, GAO Y X, et al. Personalized point-of-interest recommendation using improved graph convolutional network in location-based social network[J]. Electronics, 2023, 12(16): 3495. [25] WANG C C, PENG C, WANG M D, et al. CTHGAT: category-aware and time-aware next point-of-interest via heterogeneous graph attention network[C]//Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2021: 2420-2426. [26] 司亚利, 张付志, 刘文远. 基于签到活跃度和时空概率模型的自适应兴趣点推荐方法[J]. 电子与信息学报, 2020, 42(3): 678-686. SI Y L, ZHANG F Z, LIU W Y. An adaptive point-of-interest recommendation method based on check-in activity and temporal-spatial probabilistic models[J]. Journal of Electronics & Information Technology, 2020, 42(3): 678-686. [27] HE X, HE W K, LIU Y L, et al. ImNext: irregular interval attention and multi-task learning for next POI recommendation[J]. Knowledge-Based Systems, 2024, 293: 111674. [28] SUN X J, SUN F Z, ZHANG Z W, et al. Adaptive self-supervised learning for sequential recommendation[J]. Neural Networks, 2024, 179: 106570. [29] ZENG J, TANG H R, ZHAO Y Z, et al. Neu-PCM: neural-based potential correlation mining for POI recommendation[J]. Applied Intelligence, 2023, 53(9): 10685-10698. [30] HAN P, SHANG S, SUN A X, et al. Point-of-interest recommendation with global and local context[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5484-5495. [31] STRANG G. Introduction to applied linear algebra: vectors, matrices, and least squares[J]. IEEE Control Systems Magazine, 2020, 40(6): 136. [32] 姜涛, 徐胜华, 李晓燕, 等. 时空序列嵌入门控扩张残差网络的兴趣点推荐[J]. 武汉大学学报(信息科学版), 2024, 49(9): 1683-1692. JIANG T, XU S H, LI X Y, et al. POI recommendation of spatiotemporal sequence embedding in gated dilation residual network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. [33] ZENG J, ZHAO Y Z, WANG Z W, et al. LGSA: a next POI prediction method by using local and global interest with spatiotemporal awareness[J]. Expert Systems with Applications, 2023, 227: 120291. [34] SUN X X, HUANG B Y, WANG X F, et al. MARAN: supporting awareness of users’ routines and preferences for next POI recommendation based on spatial aggregation[J]. Expert Systems with Applications, 2024, 238: 121961. [35] LIU Y W, PEI A X, WANG F, et al. An attention-based category-aware GRU model for the next POI recommendation[J]. International Journal of Intelligent Systems, 2021, 36(7): 3174-3189. [36] ZUO C Q, ZHANG X, YAN L, et al. GUGEN: global user graph enhanced network for next POI recommendation[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 14975-14986. [37] LI S Z, CHEN W, WANG B, et al. MCN4Rec: multi-level collaborative neural network for next location recommendation[J]. ACM Transactions on Information Systems, 2024, 42(4): 1-26. [38] WU Y X, LI K, ZHAO G S, et al. Personalized long-and short-term preference learning for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1944-1957. [39] LIU C Y, LIU J P, XU S H, et al. A spatiotemporal dilated convolutional generative network for point-of-interest recommendation[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 113. [40] PERIFANIS V, DROSATOS G, STAMATELATOS G, et al. FedPOIRec: privacy-preserving federated POI recommendation with social influence[J]. Information Sciences, 2023, 623: 767-790. [41] LIU A, WANG W Q, LI Z X, et al. A privacy-preserving framework for trust-oriented point-of-interest recommendation[J]. IEEE Access, 2017, 6: 393-404. [42] SUN L L, ZHENG Y D, LU R X, et al. Towards privacy-preserving category-aware POI recommendation over encrypted LBSN data[J]. Information Sciences, 2024, 662: 120253. [43] WANG W Q, LIU A, LI Z X, et al. Protecting multi-party privacy in location-aware social point-of-interest recommendation[J]. World Wide Web, 2019, 22(2): 863-883. [44] FAN J Y, PAN C X, GENG Y, et al. A privacy-preserving time-aware method for next POI recommendation[J]. Electronics, 2023, 12(15): 3208. [45] BAO T, XU L, ZHU L H, et al. Successive point-of-interest recommendation with personalized local differential privacy[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10477-10488. [46] XU C H, MEI X Y, LIU D S, et al. An efficient privacy-preserving point-of-interest recommendation model based on local differential privacy[J]. Complex & Intelligent Systems, 2023, 9(3): 3277-3300. [47] TONG W, TONG Y G, XIA C, et al. Understanding location privacy of the point-of-interest aggregate data via practical attacks and defenses[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(3): 2433-2449. [48] CHEN C C, ZHOU J, WU B Z, et al. Practical privacy preserving POI recommendation[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(5): 1-20. [49] GUO Z W, YU K P, LV Z H, et al. Deep federated learning enhanced secure POI microservices for cyber-physical systems[J]. IEEE Wireless Communications, 2022, 29(2): 22-29. [50] DONG X N, ZENG J, WEN J H, et al. SFL: a semantic-based federated learning method for POI recommendation[J]. Information Sciences, 2024, 679: 121057. [51] WANG L E, WANG Y H, BAI Y, et al. POI recommendation with federated learning and privacy preserving in cross domain recommendation[C]//Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2021: 1-6. [52] AN J M, LI G Y, JIANG W. NRDL: decentralized user preference learning for privacy-preserving next POI recommendation[J]. Expert Systems with Applications, 2024, 239: 122421. [53] LI K, WEI H T, HE X H, et al. Relational POI recommendation model combined with geographic information[J]. PLoS One, 2022, 17(4): e0266340. [54] JIAN J L, SHI Y L. POI recommendation algorithm based on geographical information matrix decomposition[C]//Proceedings of the 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2023: 901-905. [55] RAHMANI H A, ALIANNEJADI M, BARATCHI M, et al. Joint geographical and temporal modeling based on matrix factorization for point-of-interest recommendation[C]//Advances in Information Retrieval. Cham: Springer, 2020: 205-219. [56] DAVTALAB M, ALESHEIKH A A. A POI recommendation approach integrating social spatio-temporal information into probabilistic matrix factorization[J]. Knowledge and Information Systems, 2021, 63(1): 65-85. [57] RAHMANI H A, ALIANNEJADI M, AHMADIAN S, et al. LGLMF: local geographical based logistic matrix factori- zation model for POI recommendation[C]//Proceedings of the 15th Asia Information Retrieval Societies Conference on Information Retrieval Technology. Cham: Springer, 2020: 66-78. [58] HUANG S W, WU X P, WU X Y, et al. Sentiment analysis algorithm using contrastive learning and adversarial training for POI recommendation[J]. Social Network Analysis and Mining, 2023, 13(1): 75. [59] WANG E, JIANG Y H, XU Y B, et al. Spatial-temporal interval aware sequential POI recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 2086-2098. [60] WANG D C, CHEN C, DI C, et al. Exploring behavior patterns for next-POI recommendation via graph self-supervised learning[J]. Electronics, 2023, 12(8): 1939. [61] MA C, ZHANG Y X, WANG Q L, et al. Point-of-interest recommendation: exploiting self-attentive autoencoders with neighbor-aware influence[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 697-706. [62] JU W, QIN Y F, QIAO Z Y, et al. Kernel-based substructure exploration for next POI recommendation[C]//Proceedings of the 2022 IEEE International Conference on Data Mining. Piscataway: IEEE, 2022: 221-230. [63] QIN Y F, WANG Y F, SUN F, et al. DisenPOI: disentangling sequential and geographical influence for point-of-interest recommendation[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 508-516. [64] HUANG T H, PAN X, CAI X R, et al. Learning time slot preferences via mobility tree for next POI recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8535-8543. [65] FU J R, GAO R, YU Y H, et al. Contrastive graph learning long and short-term interests for POI recommendation[J]. Expert Systems with Applications, 2024, 238: 121931. [66] HAN H Y, ZHANG M D, HOU M, et al. STGCN: a spatial-temporal aware graph learning method for POI recommendation[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 1052-1057. [67] WU H. A POI recommendation model with temporal-regional based graph representation learning[C]//Proceedings of the 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education. Piscataway: IEEE, 2022: 790-794. [68] ZHANG J K, MA W M. Hybrid structural graph attention network for POI recommendation[J]. Expert Systems with Applications, 2024, 248: 123436. [69] HU S Y, LI N. Memory-enhanced gated graph attention network for next point-of-interest recommendation[C]//Proceedings of the 2022 China Automation Congress. Piscataway: IEEE, 2022: 5246-5250. [70] LI A C, LIU F Z. A BiLSTM-attention-based point-of-interest recommendation algorithm[J]. Journal of Intelligent Systems, 2023, 32(1): 20230033. [71] LIU Z, ZHANG D J, ZHANG C W, et al. KDRank: knowledge-driven user-aware POI recommendation[J]. Knowledge-Based Systems, 2023, 278: 110884. [72] WU J X, YAO Y, FAN R M, et al. POI recommendation model based on attention-based gated recurrent unit network[C]//Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Taiwan. Piscataway: IEEE, 2021: 1-2. [73] ACHARYA M, MOHBEY K K, RAJPUT D S. Long-term preference mining with temporal and spatial fusion for point-of-interest recommendation[J]. IEEE Access, 2024, 12: 11584-11596. [74] WANG J K, YANG B, LIU H D, et al. Global spatio-temporal aware graph neural network for next point-of-interest recommendation[J]. Applied Intelligence, 2023, 53(13): 16762-16775. [75] LUO Y T, LIU Q, LIU Z C. STAN: spatio-temporal attention network for next location recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2177-2185. [76] SHI L, YANG J P, LV P T, et al. Self-derived knowledge graph contrastive learning for recommendation[C]//Proceedings of the 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 7571-7580. [77] ZHU X Y, BU C Y, DONG B B, et al. IKGN: intention-aware knowledge graph network for POI recommendation[C]//Proceedings of the 2023 IEEE International Conference on Data Mining. Piscataway: IEEE, 2023: 908-917. [78] ZHANG C W, LI T, GOU Y Q, et al. KEAN: knowledge embedded and attention-based network for POI recommendation[C]//Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications. Piscataway: IEEE, 2020: 847-852. [79] XIA B, BAI Y X, YIN J J, et al. MTPR: a multi-task learning based POI recommendation considering temporal check-ins and geographical locations[J]. Applied Sciences, 2020, 10(19): 6664. [80] NI S, ZHOU W, WEN J H, et al. Enhancing sequential recommendation with contrastive generative adversarial network[J]. Information Processing & Management, 2023, 60(3): 103331. [81] QIN Y F, WU H J, JU W, et al. A diffusion model for POI recommendation[J]. ACM Transactions on Information Systems, 2024, 42(2): 1-27. [82] WANG Z W, ZENG J, ZHONG L, et al. DSDRec: next POI recommendation using deep semantic extraction and diffusion model[J]. Information Sciences, 2024, 678: 121004. [83] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. [84] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. [85] ZHOU F, YIN R Y, ZHANG K P, et al. Adversarial point-of-interest recommendation[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 3462-3468. [86] LIU J, ZHAI D H, HUANG W, et al. Daily schedule recommendation in urban life based on deep reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2196-2205. |
| [1] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [2] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [3] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [10] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [11] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [12] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [13] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [14] | 李佳静, 李盛, 戴媛媛, 孟涛, 罗小清, 闫宏飞. 融合位置信息和交互注意力的方面级情感分析[J]. 计算机工程与应用, 2025, 61(6): 220-228. |
| [15] | 刘红玉, 高见. 融合CBAM的违法犯罪类安卓恶意软件检测与分类模型研究[J]. 计算机工程与应用, 2025, 61(6): 317-327. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||