
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 46-61.DOI: 10.3778/j.issn.1002-8331.2411-0460
贾哲源,金凤林,何源
出版日期:2025-07-01
发布日期:2025-06-30
JIA Zheyuan, JIN Fenglin, HE Yuan
Online:2025-07-01
Published:2025-06-30
摘要: 随着地面网络流量需求的日益增长,传统地面网络服务难以满足用户需求。为了提供高质量的网络覆盖,空天地网络迅速发展,其中,利用流量卸载技术缓解地面网络通信压力成为当前的研究热点。此外,人工智能技术的引入为解决流量卸载中的复杂问题提供了解决方案。对空天地网络中智能流量卸载技术的研究进展进行全面综述,梳理了流量卸载技术的应用场景和智能方法应用,对不同场景中流量卸载技术的特点进行了全面梳理和分析,从智能化方法应用的角度分析了现有的流量卸载技术,并归纳了不同方法的特点和适用场景。基于上述研究,提出了未来空天地网络中智能流量卸载技术所面临的挑战,同时对未来的研究方向进行了展望。
贾哲源, 金凤林, 何源. 空天地网络智能流量卸载技术研究综述[J]. 计算机工程与应用, 2025, 61(13): 46-61.
JIA Zheyuan, JIN Fenglin, HE Yuan. Survey of Intelligent Traffic Offloading Technology in Space-Air-Ground Networks[J]. Computer Engineering and Applications, 2025, 61(13): 46-61.
| [1] LIU J J, SHI Y P, FADLULLAH Z M, et al. Space-air-ground integrated network: a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714-2741. [2] KATO N, FADLULLAH Z M, TANG F X, et al. Optimizing space-air-ground integrated networks by artificial intelligence[J]. IEEE Wireless Communications, 2019, 26(4): 140-147. [3] LIANG H, YANG Z Q, ZHANG G B, et al. Resource allocation for space-air-ground integrated networks: a comprehensive review[J]. Journal of Communications and Information Networks, 2024, 9(1): 1-23. [4] SEO J, KIM Y, KIM D, et al. A survey on machine learning for space-air-ground integrated network: key technologies and challenges[C]//Proceedings of the 2024 International Conference on Electronics, Information, and Communication. Piscataway: IEEE, 2024: 1-3. [5] 颜学文, 董超, 屈毓锛. 基于D2D通信的流量卸载技术综述[J]. 计算机科学, 2018, 45(11): 45-51. YAN X W, DONG C, QU Y B. Survey of D2D-based traffic offloading[J]. Computer Science, 2018, 45(11): 45-51. [6] 沈海灵, 冯捷, 纪其进. 移动数据流量卸载技术的比较研究[J]. 移动通信, 2015, 39(22): 35-39. SHEN H L, FENG J, JI Q J. Comparative research on mobile data offloading techniques[J]. Mobile Communications, 2015, 39(22): 35-39. [7] ROSELE N, ZAINI K M, MUSTAFFA N A, et al. Digital transformation in wireless networks: a comprehensive analysis of mobile data offloading techniques, challenges, and future prospects[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(5): 102071. [8] DIMATTEO S, HUI P, HAN B, et al. Cellular traffic offloading through WiFi networks[C]//Proceedings of the 2011 IEEE 8th International Conference on Mobile Ad-Hoc and Sensor Systems. Piscataway: IEEE, 2011: 192-201. [9] EL-ATTY S M A, GHARSSELDIEN Z M. Mobile traffic offloading in heterogeneous networks-based small cell technology[J]. Arabian Journal for Science and Engineering, 2016, 41(2): 555-567. [10] ANDREEV S, PYATTAEV A, JOHNSSON K, et al. Cellular traffic offloading onto network-assisted device-to-device connections[J]. IEEE Communications Magazine, 2014, 52(4): 20-31. [11] CHEN X F, WU J S, CAI Y M, et al. Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(4): 627-640. [12] 贺鑫. 基于博弈论的异构网络流量卸载算法研究[D]. 呼和浩特: 内蒙古大学, 2023. HE X. Research on traffic offloading algorithms based on game theory[D]. Hohhot: Inner Mongolia University, 2023. [13] ZHANG Y, WEI Z Q, FENG Z Y, et al. Network state motivated traffic offloading scheme in heterogeneous networks[C]//Proceedings of the 2015 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2015: 1446-1451. [14] ALQERM I, SHIHADA B. Energy efficient traffic offloading in multi-tier heterogeneous 5G networks using intuitive online reinforcement learning[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 691-702. [15] 王倩, 聂秀山, 尹义龙. 密集异构网络中基于强化学习的流量卸载算法[J]. 计算机研究与发展, 2018, 55(8): 1706-1716. WANG Q, NIE X S, YIN Y L. A reinforcement learning algorithm for traffic offloading in dense heterogeneous network[J]. Journal of Computer Research and Development, 2018, 55(8): 1706-1716. [16] ABDELRADI Y M, EL-SHERIF A A, AFIFY L H. A queueing theory approach for maximized energy efficiency traffic offloading[C]//Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference. Piscataway: IEEE, 2020: 549-554. [17] HU X L, ZHUANG X X, FENG G S, et al. Joint optimization of traffic and computation offloading in UAV-assisted wireless networks[C]//Proceedings of the 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems. Piscataway: IEEE, 2018: 475-480. [18] LIU B C, ZHANG W K, CHEN W H, et al. Online computation offloading and traffic routing for UAV swarms in edge-cloud computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8777-8791. [19] KHAKIMOV A, ALEKSEEVA D, MUTHANNA A, et al. Traffic offloading algorithm for VANET network based on UAV[C]//Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Piscataway: IEEE, 2020: 28-32. [20] AISSA S B, LETAIFA A B, SAHLI A, et al. Computing offloading and load balancing within UAV clusters[C]//Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference. Piscataway: IEEE, 2022: 497-498. [21] DU S G, CHEN X, JIAO L B, et al. Deep reinforcement learning-based UAV-assisted mobile edge computing offloading and resource allocation decision[C]//Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2022: 2728-2734. [22] WANG D, TIAN J, ZHANG H X, et al. Task offloading and trajectory scheduling for UAV-enabled MEC networks: an optimal transport theory perspective[J]. IEEE Wireless Communications Letters, 2022, 11(1): 150-154. [23] FAN B, JIANG L, CHEN Y Y, et al. UAV assisted traffic offloading in air ground integrated networks with mixed user traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12601-12611. [24] DING Y, FENG Y Q, LU W D, et al. Online edge learning offloading and resource management for UAV-assisted MEC secure communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 54-65. [25] LI F Q, ZHANG K Y, WANG J H, et al. Multi-UAV hierarchical intelligent traffic offloading network optimization based on deep federated learning[J]. IEEE Internet of Things Journal, 2024, 11(12): 21312-21324. [26] LUO Q Y, LUAN T H, SHI W S, et al. Deep reinforcement learning based computation offloading and trajectory planning for multi-UAV cooperative target search[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 504-520. [27] CHEN J X, WU Q H, XU Y H, et al. A multi-leader multi-follower Stackelberg game for coalition-based UAV MEC networks[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2350-2354. [28] ALI M A, ZENG Y, JAMALIPOUR A. Software-defined coexisting UAV and WiFi: delay-oriented traffic offloading and UAV placement[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(6): 988-998. [29] 王祎. 无人机辅助蜂窝网络缓存放置与内容分发联合优化算法研究[D]. 北京: 北京邮电大学, 2021. WANG Y. Research on joint optimization algorithm of cache placement and content distribution in UAV-assisted cellular network[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. [30] WANG Y G, WANG H, WEI X L. Energy-efficient UAV deployment and task scheduling in multi-UAV edge computing[C]//Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2020: 1147-1152. [31] ZHANG L, ABDERRAHIM W, SHIHADA B. Heterogeneous traffic offloading in space-air-ground integrated networks[J]. IEEE Access, 2021, 9: 165462-165475. [32] LUGLIO M, MARCHESE M, PATRONE F, et al. Performance evaluation of a satellite communication-based MEC architecture for IoT applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 3775-3785. [33] SUN Y H, PENG M G, ZHANG S J, et al. Integrated satellite-terrestrial networks: architectures, key techniques, and experimental progress[J]. IEEE Network, 2022, 36(6): 191-198. [34] 赵明. 空天地一体化网络分层协同学习与激励机制研究[D]. 西安: 西安电子科技大学, 2023. ZHAO M. Research on hierarchical collaborative learning and incentive mechanism in space-air-ground integrated network[D]. Xi’an: Xidian University, 2023. [35] AGBO P, WEITKEMPER P. Performance evaluation of low earth orbit satellite in terrestrial 5G networks with edge offloading[C]//Proceedings of the 2023 IEEE Future Networks World Forum. Piscataway: IEEE, 2023: 1-5. [36] HAN D R, YE Q, PENG H X, et al. Two-timescale learning-based task offloading for remote IoT in integrated satellite-terrestrial networks[J]. IEEE Internet of Things Journal, 2023, 10(12): 10131-10145. [37] DU J, JIANG C X, ZHANG H J, et al. Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2202-2217. [38] DI B Y, ZHANG H L, SONG L Y, et al. Data offloading in ultra-dense LEO-based integrated terrestrial-satellite networks[C]//Proceedings of the 2018 IEEE Global Communications Conference. Piscataway: IEEE, 2018: 1-6. [39] DI B Y, ZHANG H L, SONG L Y, et al. Ultra-dense LEO: integrating terrestrial-satellite networks into 5G and beyond for data offloading[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 47-62. [40] NIEPHAUS C, M?DEKER J, GHINEA G. Toward traffic offload in converged satellite and terrestrial networks[J]. IEEE Transactions on Broadcasting, 2019, 65(2): 340-346. [41] LI J, XUE K P, WEI D S L, et al. Energy efficiency and traffic offloading optimization in integrated satellite/terrestrial radio access networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2367-2381. [42] DAI C Q, JIN L, CHEN Q B. Reverse auction for cloud-based traffic offloading in hybrid satellite-terrestrial networks[C]//Proceedings of the 2020 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2020: 112-117. [43] ZHU Y, ZHOU D, SHENG M, et al. Stochastic delay analysis for satellite data relay networks with heterogeneous traffic and transmission links[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 156-170. [44] FAN X Y, HU J J, CUI Y P, et al. Channel-aware gradient fair association for LEO inter-satellite links[C]//Proceedings of the 2022 IEEE 96th Vehicular Technology Conference. Piscataway: IEEE, 2022: 1-5. [45] HE P, HU J J, FAN X Y, et al. Load-balanced collaborative offloading for LEO satellite networks[J]. IEEE Internet of Things Journal, 2023, 10(21): 19075-19086. [46] WEI J B, ZHU R J, ZHAO Q C, et al. Continuous two-way auction based traffic offloading in LEO satellite optical networks[C]//Proceedings of the 2023 21st International Conference on Optical Communications and Networks. Piscataway: IEEE, 2023: 1-3. [47] ABDERRAHIM W, AMIN O, ALOUINI M S, et al. Latency-aware offloading in integrated satellite terrestrial networks[J]. IEEE Open Journal of the Communications Society, 2020, 1: 490-500. [48] ABDERRAHIM W, AMIN O, ALOUINI M S, et al. Proactive traffic offloading in dynamic integrated multisatellite terrestrial networks[J]. IEEE Transactions on Communications, 2022, 70(7): 4671-4686. [49] WANG J P, LI D, ZHANG Z, et al. Traffic offloading and resource allocation for PDMA-based integrated satellite/terrestrial networks[C]//Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems. Piscataway: IEEE, 2022: 259-262. [50] AKHLAGHPASAND H, SHAH-MANSOURI V. Traffic offloading probability for integrated LEO satellite-terrestrial networks[J]. IEEE Communications Letters, 2023, 27(9): 2413-2416. [51] 罗峻锋. 星地融合网络中的用户关联和流量卸载研究[D]. 重庆: 重庆邮电大学, 2020. LUO J F. Research on user association and traffic offloading in satellite-terrestrial integrated networks[D]. Chongqing: Chong- qing University of Posts and Telecommunications, 2020. [52] 金兰. 混合卫星地面网络中的流量卸载策略研究[D]. 重庆: 重庆邮电大学, 2021. JIN L. Research on traffic unloading strategy in hybrid satellite ground network[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. [53] 文聪. 空天地一体化网络接入优化研究[D]. 长沙: 中南大学, 2023. WEN C. Access optimization research of space-air-ground integrated network[D]. Changsha: Central South University, 2023. [54] 吴健, 贾敏, 郭庆. 基于移动边缘计算的空天地一体化网络架构[J]. 天地一体化信息网络, 2024, 5(1): 24-31. WU J, JIA M, GUO Q. Space-air-ground integrated network archi-tecture based on mobile edge computing[J]. Space-Integrated-Ground Information Networks, 2024, 5(1): 24-31. [55] TAN S H, DUN C Y, JIN F L, et al. UAV control in smart city based on space-air-ground integrated network[C]//Proceedings of the 2021 International Conference on Internet, Education and Information Technology. Piscataway: IEEE, 2021: 324-328. [56] ZHU W W, CHEN X, JIAO L B, et al. Cost-efficient 6G space-air-ground integrated mobile edge computing for smart city: a PPO-based offloading decision and resource allocation algorithm[C]//Proceedings of the 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application. Piscataway: IEEE, 2023: 241-248. [57] QU H, LUO Y Y, ZHAO J H, et al. An LBMRE-OLSR routing algorithm under the emergency scenarios in the space-air-ground integrated networks[C]//Proceedings of the 2020 Information Communication Technologies Conference. Piscataway: IEEE, 2020: 103-107. [58] OKOUMASSOUN T P, AL RIDHAWI I, ABBAS A, et al. Blockchain-enabled SAGIN communication for disaster prediction and management[C]//Proceedings of the 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress. Piscataway: IEEE, 2023: 678-683. [59] HUANG S X, LUNG A, CHEN J Y, et al. Multi-hop data delivery in hybrid self-organized networks for mountain rescue[C]//Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics. Piscataway: IEEE, 2023: 117-118. [60] JIA H Q, WANG Y, WU W. Dynamic resource allocation for remote IoT data collection in SAGIN[J]. IEEE Internet of Things Journal, 2024, 11(11): 20575-20589. [61] SHYAM G K, CHANDRAKAR I. A novel approach to edge-fog-cloud based smart agriculture[C]//Proceedings of the 2023 International Conference on New Frontiers in Communication, Automation, Management and Security. Piscataway: IEEE, 2023: 1-5. [62] LIU J L, DU H, YUAN X G, et al. Satellite routing in space-air-ground integrated IoT networks[C]//Proceedings of the 2021 International Wireless Communications and Mobile Computing. Piscataway: IEEE, 2021: 1534-1538. [63] YU S, GONG X W, SHI Q, et al. EC-SAGINs: edge-computing-enhanced space-air-ground-integrated networks for Internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5742-5754. [64] FOFANA N, BEN LETAIFA A, RACHEDI A. Machine learning approach for task offloading strategy in IoV[C]//Proceedings of the 2023 International Wireless Communications and Mobile Computing. Piscataway: IEEE, 2023: 512-517. [65] TANG F X, HOFNER H, KATO N, et al. A deep reinforcement learning-based dynamic traffic offloading in space-air-ground integrated networks (SAGIN)[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 276-289. [66] TANG F X, WEN C, LUO L F, et al. Blockchain-based trusted traffic offloading in space-air-ground integrated networks (SAGIN): a federated reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3501-3516. [67] 杨易林. 基于联邦强化学习的空天地一体化网络中的流量卸载研究[D]. 长沙: 中南大学, 2023. YANG Y L. Federated reinforcement learning-based intelligent traffic offloading in space-air-ground integrated network[D]. Changsha: Central South University, 2023. [68] XIA X, ESMAT H H, DYER K, et al. Cross-domain federated computation offloading for age of information minimization in satellite-airborne-terrestrial networks[C]//Proceedings of the 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway: IEEE, 2023: 1-7. [69] TANG F X, WEN C, CHEN X H, et al. Federated learning for intelligent transmission with space-air-ground integrated network toward 6G[J]. IEEE Network, 2023, 37(2): 198-204. [70] JAVED F, AFZAL M K, SHARIF M, et al. Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2062-2100. [71] 付禹陶. 空天地网络中广域物联数据传输技术研究[D]. 北京: 北京邮电大学, 2019. FU Y T. Research on data transmission technology of wide-area Internet of things in air-space network[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. [72] MENG X, ZHANG N, JIAN M N, et al. Channel modeling and estimation for reconfigurable-intelligent-surface-based 6G SAGIN IoT[J]. IEEE Internet of Things Journal, 2023, 10(11): 9273-9282. [73] CHEN Q, MENG W X, QUEK T Q S, et al. Multi-tier hybrid offloading for computation-aware IoT applications in civil aircraft-augmented SAGIN[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 399-417. [74] ZHOU C H, WU W, HE H L, et al. Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 911-925. [75] WANG Z H, CHEN Y Z, LI C. CORMAN: a novel cooperative opportunistic routing scheme in mobile ad hoc networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(2): 289-296. [76] COOPER C, FRANKLIN D, ROS M, et al. A comparative survey of VANET clustering techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 657-681. [77] PATHAK P H, DUTTA R. A survey of network design problems and joint design approaches in wireless mesh networks[J]. IEEE Communications Surveys & Tutorials, 2011, 13(3): 396-428. [78] KUMAR S A A, OVSTHUS K, KRISTENSEN L M. An industrial perspective on wireless sensor networks: a survey of requirements, protocols, and challenges[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1391-1412. [79] AL-EMADI S, AL-MOHANNADI A. Towards enhancement of network communication architectures and routing protocols for FANETs: a survey[C]//Proceedings of the 2020 3rd International Conference on Advanced Communication Technologies and Networking. Piscataway: IEEE, 2020: 1-10. [80] GANESH S, GOPALASAMY V, SAI SHIBU N B. Architecture for drone assisted emergency ad-hoc network for disaster rescue operations[C]//Proceedings of the 2021 International Conference on Communication Systems & Networks. Piscataway: IEEE, 2021: 44-49. [81] CABUK U C, TOSUN M, DAGDEVIREN O, et al. An architectural design for autonomous and networked drones[C]//Proceedings of the MILCOM 2022-2022 IEEE Military Communications Conference. Piscataway: IEEE, 2022: 962-967. [82] ALKUBEILY M, SAKULIN S A, HASAN B. Design an adaptive trajectory to support UAV assisted VANET networks[C]//Proceedings of the 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering. Piscataway: IEEE, 2023: 1-6. [83] NUNES B A A, MENDONCA M, NGUYEN X N, et al. A survey of software-defined networking: past, present, and future of programmable networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1617-1634. [84] MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: state-of-the-art and research challenges[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 236-262. [85] TAO J, LIU S D, LIU C. A traffic scheduling scheme for load balancing in SDN-based space-air-ground integrated networks[C]//Proceedings of the 2022 IEEE 23rd International Conference on High Performance Switching and Routing. Piscataway: IEEE, 2022: 95-100. [86] YANG Y X, LI B, LIU Y D, et al. Joint delay and throughput network resource orchestration in SAGIN based on SDN[C]//Proceedings of the 2023 9th International Conference on Computer and Communications. Piscataway: IEEE, 2023: 232-236. [87] 杨皓程. 应急状态下基于SDN的空天地一体化网络负载均衡算法的研究[D]. 北京: 北京交通大学, 2022. YANG H C. Research on load balancing algorithm of air-space-ground integrated network based on SDN in emergency state[D]. Beijing: Beijing Jiaotong University, 2022. [88] LI J L, SHI W S, WU H Q, et al. Cost-aware dynamic SFC mapping and scheduling in SDN/NFV-enabled space-air-ground-integrated networks for Internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5824-5838. [89] CHEN C, LIAO Z, JU Y, et al. Hierarchical domain-based multicontroller deployment strategy in SDN-enabled space-air-ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4864-4879. [90] 袁晓旭. D2D及无人机辅助的应急通信网络性能优化技术研究[D]. 北京: 北京邮电大学, 2021. YUAN X X. The performance optimization of D2D and UAV-assisted emergency communication networks[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. [91] PASTUKH A, MIRONOVA O, TIKHVINSKIY V, et al. Analysis of the possibility to use hybrid satellite-terrestrial systems (direct-to-device) in the IMT bands of terrestrial cellular networks[C]//Proceedings of the 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications. Piscataway: IEEE, 2024: 1-6. [92] 胡恒, 金凤林, 郎思琪. 移动边缘计算环境中的计算卸载技术研究综述[J]. 计算机工程与应用, 2021, 57(14): 60-74. HU H, JIN F L, LANG S Q. Survey of research on computation offloading technology in mobile edge computing environment[J]. Computer Engineering and Applications, 2021, 57(14): 60-74. [93] ABUALI N, NDONG M, HAYAJNEH M. Relay-aided D2D MIMO scheme (RAS) for achieving energy efficiency in satellite-air-ground integrated networks (SAGIN)[J]. IEEE Canadian Journal of Electrical and Computer Engineering, 2023, 46(4): 333-341. [94] KAFILO?LU S S, GüR G, ALAG?Z F. Connectivity mode management for user devices in heterogeneous D2D networks[J]. IEEE Wireless Communications Letters, 2021, 10(1): 194-198. [95] YOU Q, XU Q, YANG X, et al. Distributed deep learning for RIS aided UAV-D2D communications in space-air-ground networks[C]//Proceedings of the 2023 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2023: 1-6. [96] 陈琳, 董甲东, 潘凯, 等. 云边端和D2D边缘架构下的计算卸载策略综述[J]. 计算机工程与应用, 2023, 59(15): 55-67. CHEN L, DONG J D, PAN K, et al. Survey of computation offloading strategies under cloud-edge-end and D2D edge architectures[J]. Computer Engineering and Applications, 2023, 59(15): 55-67. [97] LI H, OTA K, DONG M X. AI in SAGIN: building deep learning service-oriented space-air-ground integrated networks[J]. IEEE Network, 2023, 37(2): 154-159. [98] QI J J, ZHOU Q H, LEI L, et al. Federated reinforcement learning: techniques, applications, and open challenges[J]. Intelligence & Robotics, 2021, 1(1): 18-57. [99] QIN Y G, YANG Y L, TANG F X, et al. Differentiated federated reinforcement learning based traffic offloading on space-air-ground integrated networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11000-11013. [100] TAMPUU A, MATIISEN T, KODELJA D, et al. Multiagent cooperation and competition with deep reinforcement learning[J]. PLoS One, 2017, 12(4): e0172395. [101] 赵立阳, 常天庆, 褚凯轩, 等. 完全合作类多智能体深度强化学习综述[J]. 计算机工程与应用, 2023, 59(12): 14-27. ZHAO L Y, CHANG T Q, CHU K X, et al. Survey of fully cooperative multi-agent deep reinforcement learning[J]. Computer Engineering and Applications, 2023, 59(12): 14-27. [102] TANG Z X, ZHOU H B, MA T, et al. Leveraging LEO assisted cloud-edge collaboration for energy efficient computation offloading[C]//Proceedings of the 2021 IEEE Global Communications Conference. Piscataway: IEEE, 2021: 1-6. [103] WANG Y T, SU Z, NI J B, et al. Blockchain-empowered space-air-ground integrated networks: opportunities, challenges, and solutions[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 160-209. [104] WU M, GUO K F, LIN Z, et al. Joint optimization design of RIS-assisted hybrid FSO SAGINs using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3025-3040. |
| [1] | 庾源清, 马为之, 张敏. 基于内在奖励的强化学习推荐探索策略[J]. 计算机工程与应用, 2025, 61(7): 188-195. |
| [2] | 马祖鑫, 崔允贺, 秦永彬, 申国伟, 郭春, 陈意, 钱清. 融合深度强化学习的卷积神经网络联合压缩方法[J]. 计算机工程与应用, 2025, 61(6): 210-219. |
| [3] | 余城旭, 张宇来. 基于微调的深度学习后门防御研究[J]. 计算机工程与应用, 2025, 61(5): 155-164. |
| [4] | 张少军, 苏长利. 基于情绪词典和BERT-BiLSTM的股指预测研究[J]. 计算机工程与应用, 2025, 61(4): 358-367. |
| [5] | 刘延飞, 李超, 王忠, 王杰铃. 多智能体深度强化学习及可扩展性研究进展[J]. 计算机工程与应用, 2025, 61(4): 1-24. |
| [6] | 李彦, 万征. 深度强化学习在边缘视频传输优化中的应用综述[J]. 计算机工程与应用, 2025, 61(4): 43-58. |
| [7] | 顾金浩, 况立群, 韩慧妍, 曹亚明, 焦世超. 动态环境下共融机器人深度强化学习导航算法[J]. 计算机工程与应用, 2025, 61(4): 90-98. |
| [8] | 刘悦, 李化义, 张世杰, 张超, 赵祥天. 面向视觉惯导的导航系统初始化技术综述[J]. 计算机工程与应用, 2025, 61(2): 1-18. |
| [9] | 黄勇萍, 李春青, 李熙春. 基于分级知识嵌入与强化学习的时序知识图谱推理方法[J]. 计算机工程与应用, 2025, 61(13): 235-244. |
| [10] | 杨蓝, 毕利, 杨众. 结合图神经网络的DDQN算法的动态车间调度问题研究[J]. 计算机工程与应用, 2025, 61(12): 344-351. |
| [11] | 姜文鑫, 吴志周, 许宏鑫, 梁韵逸. 基于强化学习的自动驾驶汽车换道决策研究[J]. 计算机工程与应用, 2025, 61(12): 359-371. |
| [12] | 籍欣萌, 昝红英, 崔婷婷, 张坤丽. 大模型在垂直领域应用的现状与挑战[J]. 计算机工程与应用, 2025, 61(12): 1-11. |
| [13] | 李成健, 宋姝谊, 粟宇, 陈智斌. 深度强化学习求解多目标旅行商问题的研究综述[J]. 计算机工程与应用, 2025, 61(12): 28-44. |
| [14] | 魏琦, 李艳武, 谢辉, 牛晓伟. 基于图神经网络的柔性作业车间两阶段调度研究[J]. 计算机工程与应用, 2025, 61(11): 342-350. |
| [15] | 郭洪飞, 傅文杰, 李雷孝, 林浩. 基于最优化的拆卸序列规划研究进展[J]. 计算机工程与应用, 2025, 61(11): 51-66. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||