[1] ZOU X H. A survey on application of knowledge graph[J]. Journal of Physics: Conference Series, 2020, 1487(1): 012016.
[2] WANG Q Y, YIN H Z, WANG W Q, et al. Multi-hop path queries over knowledge graphs with neural memory network[C]//Proceedings of the International Conference on Database Systems for Advanced Applications, 2019: 777-794.
[3] XUAN H R, LIU Y, LI B H, et al. Knowledge enhancement for contrastive multi-behavior recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 195-203.
[4] YIN H Z, CUI B, HUANG Z, et al. Joint modeling of users’interests and mobility patterns for point-of-interest recommendation[C]//Proceedings of the 23rd ACM International Conference on Multimedia, 2015: 819-822.
[5] YU J L, YIN H Z, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 1294-1303.
[6] 刘世侠, 李卫军, 刘雪洋, 等. 基于强化学习的知识图谱推理研究综述[J]. 计算机应用研究, 2024, 41(9): 2561-2572.
LIU S X, LI W J, LIU X Y, et al. Review of reinforcement learning based knowledge graph reasoning research[J]. Application Research of Computers, 2024, 41(9): 2561-2572.
[7] 孙崇, 王海荣, 荆博祥, 等. 融合动作退出和软奖励的强化学习知识推理方法[J]. 计算机工程与应用, 2024, 60(24): 158-165.
SUN C, WANG H R, JING B X, et al. Knowledge reasoning method of reinforcement learning integrating action with drawal and soft reward[J]. Computer Engineering and Applications, 2024, 60(24): 158-165.
[8] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948.
[9] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advanced in Neural Information Processing Systems, 2013: 2787-2795.
[10] GUU K, MILLER J, LIANG P. Traversing knowledge graphs in vector space[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 318-327.
[11] ZHANG Z Q, CAI J Y, WANG J, et al. Duality-induced regu- larizer for tensor factorization based knowledge graph completion[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 21604-21615.
[12] XIONG W H, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573.
[13] DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning[J]. arXiv:1711.05851, 2017.
[14] LIN X V, SOCHER R, XIONG C M. Multi-hop knowledge graph reasoning with reward shaping[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 3243-3253.
[15] 王俞涵, 陈子阳, 赵翔, 等. 时序知识图谱表示与推理的研究进展与趋势[J]. 软件学报, 2024, 35(8): 3923-3951.
WANG Y H, CHEN Z Y, ZHAO X, et al. Research progress and trend of temporal knowledge graph representation and reasoning[J]. Journal of Software, 2024, 35(8): 3923-3951.
[16] 沈英汉, 江旭晖, 王元卓, 等. 时态知识图谱的推理研究综述[J]. 计算机学报, 2023, 46(6): 1272-1301.
SHEN Y H, JIANG X H, WANG Y Z, et al. A survey of temporal knowledge graph reasoning[J]. Chinese Journal of Computers, 2023, 46(6): 1272-1301.
[17] LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph[C]//Proceedings of the Companion of the Web Conference. New York: ACM, 2018: 1771-1776.
[18] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4816-4821.
[19] GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3988-3995.
[20] JIN W, QU M, JIN X S, et al. Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6669-6683.
[21] ZHU C C, CHEN M H, FAN C J, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4732-4740.
[22] LI Z X, GUAN S P, JIN X L, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 290-296.
[23] BAI L Y, YU W T, CHEN M Z, et al. Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning[J]. Applied Soft Computing, 2021, 103: 107144.
[24] 肖蕾, 李琪. 时序知识图谱补全方法研究综述[J]. 计算机工程与应用, 2024, 60(6): 43-54.
XIAO L, LI Q. Survey of temporal knowledge graph completion methods[J]. Computer Engineering and Applications, 2024, 60(6): 43-54.
[25] TAO Y, LI Y, WU Z H. Temporal link prediction via reinforcement learning[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 3470-3474.
[26] SUN H H, ZHONG J L, MA Y P, et al. Time traveler: reinforcement learning for temporal knowledge graph forecasting[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8306-8319.
[27] LUO X W, ZHU A J, ZHANG J S, et al. HierarT: multi-hop temporal knowledge graph forecasting with hierarchical reinforcement learning[J]. Knowledge-Based Systems, 2024, 300: 112164.
[28] WANG J B, WU R F, WU Y W, et al. MPNet: temporal knowledge graph completion based on a multi-policy network[J]. Applied Intelligence, 2024, 54(3): 2491-2507.
[29] LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 408-417.
[30] 许凯嘉, 柳林, 王海龙, 等. 时序知识图谱补全研究综述[J]. 计算机工程与应用, 2024, 60(22): 38-57.
XU K J, LIU L, WANG H L, et al. Survey on temporal knowledge graph completion research[J]. Computer Engineering and Applications, 2024, 60(22): 38-57.
[31] ZHANG M Q, WU S, GAO M, et al. Personalized graph neural networks with attention mechanism for session-aware recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3946-3957.
[32] LV Q S, DING M, LIU Q, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 1150-1160.
[33] HAN Z, CHEN P, MA Y P, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of the International Conference on Learning Representations, 2021.
[34] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3): 229-256.
[35] BOSCHEE E, LAUTENSCHLAGER J, O’BRIEN S, et al. ICEWS coded event data[J]. Harvard Dataverse, 2015, 12.
[36] ZHU C C, CHEN M H, FAN C J, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4732-4740.
[37] LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph[C]//Proceedings of the Companion of the Web Conference. New York: ACM, 2018: 1771-1776.
[38] MAHDISOLTANI F, BIEGA J, SUCHANEK F M. YAGO3: a knowledge base from multilingual wikipedias[C]//Proceedings of the 7th Biennial Conference on Innovative Data Systems Research, 2015.
[39] JIN W, QU M, JIN X S, et al. Recurrent event network: auto- regressive structure inferenceover temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6669-6683.
[40] LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 408-417. |