计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 359-371.DOI: 10.3778/j.issn.1002-8331.2409-0111

• 工程与应用 • 上一篇    下一篇

基于强化学习的自动驾驶汽车换道决策研究

姜文鑫,吴志周,许宏鑫,梁韵逸   

  1. 1.新疆大学 智能制造现代产业学院,乌鲁木齐 830049
    2.新疆大学 交通运输工程学院,乌鲁木齐 830049
    3.同济大学 交通运输工程学院,上海 201804
    4.上海理工大学 管理学院,上海 200093
  • 出版日期:2025-06-15 发布日期:2025-06-13

Research on Lane Change Decision-Making for Autonomous Vehicles Based on Reinforcement Learning

JIANG Wenxin, WU Zhizhou, XU Hongxin, LIANG Yunyi   

  1. 1.College of Intelligent Manufacturing Modern Industry, Xinjiang University, Urumqi 830049 China
    2.School of Traffic and Transportation Engineering, Xinjiang University, Urumqi 830049 China
    3.College of Transportation Engineering, Tongji University, Shanghai 201804 China
    4.Business School, University of Shanghai for Science and Technology, Shanghai 200093 China
  • Online:2025-06-15 Published:2025-06-13

摘要: 换道作为车辆行驶的常见行为之一,操作不当极易引发交通事故。针对自动驾驶汽车的换道决策问题,提出了一种基于强化学习的DDQN(双深度Q网络)模型,该模型通过离散动作空间,结合驾驶舒适性、效率、安全性和换道惩罚四个方面设计奖励函数,以优化换道决策。为验证换道决策模型的性能,基于SUMO和真实高速公路车辆数据集搭建高速公路场景下的仿真模型。对比实验结果表明,DDQN模型在驾驶舒适性、交通效率、任务成功率及车辆平均行程速度方面均优于传统的DQN(深度Q网络)和Dueling DQN(对决深度Q网络)模型,且换道次数较少。此外,在四种不同交通拥堵场景下的实验结果显示,DDQN模型在不同拥堵情况下均保持了良好的性能,任务成功率均超过75%。研究表明,基于强化学习的DDQN算法能够为自动驾驶汽车提供有效的换道决策支持。

关键词: 自动驾驶, 换道决策, 强化学习, 马尔可夫决策过程

Abstract: Lane changing, as one of the common behaviors in vehicle driving, can easily lead to traffic accidents if improperly executed. This paper addresses the lane-changing decision-making problem for autonomous vehicles by proposing a double deep Q-network (DDQN) based on reinforcement learning model. The model utilizes a discrete action space and designs a reward function that considers four aspects: driving comfort, efficiency, safety, and lane-changing penalty, aiming to optimize lane-change decisions. To validate the performance of the lane-changing decision model, a simulation model is built for a highway scenario using SUMO and a real highway vehicle dataset. Comparative experimental results show that the DDQN model outperforms traditional DQN and dueling DQN models in terms of driving comfort, traffic efficiency, task success rate, and average vehicle travel speed, with fewer lane changes. Additionally, experimental results under four different traffic congestion scenarios demonstrate that the DDQN model maintains robust performance across varying congestion levels, with task success rates exceeding 75%. This study indicates that the DDQN algorithm based on reinforcement learning can provide effective lane-changing decision support for autonomous vehicles.

Key words: autonomous driving, lane change decision-making, reinforcement learning, Markov decision process