[1] 蒲龙忠. 驾驶员驾驶车辆变道行为原因综述[J]. 交通科技与管理, 2021(17): 215.
PU L Z. A summary of the causes of drivers’ lane-changing behavior[J]. Traffic Science and Management, 2021(17): 215.
[2] GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
[3] HIDAS P. Modelling lane changing and merging in microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(5/6): 351-371.
[4] YU H T, TSENG H E, LANGARI R. A human-like game theory-based controller for automatic lane changing[J]. Transportation Research Part C: Emerging Technologies, 2018, 88: 140-158.
[5] SMIRNOV N, LIU Y Z, VALIDI A, et al. A game theory-based approach for modeling autonomous vehicle behavior in congested, urban lane-changing scenarios[J]. Sensors, 2021, 21(4): 1523.
[6] DONG C Y, WANG H, LI Y, et al. Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp[J]. Transportmetrica A: Transport Science, 2021, 17(1): 124-150.
[7] LIU X, LIANG J, XU B. A deep learning method for lane changing situation assessment and decision making[J]. IEEE Access, 2019, 7: 133749-133759.
[8] 张甫城. 基于机器学习的智能车辆换道决策和轨迹规划研究[D]. 西安: 长安大学, 2021.
ZHANG F C. Research on lane change decisions and trajectory planning of intelligent vehicle through machine learning[D]. Xi’an: Chang’an University, 2021.
[9] WATKINS C J C H. Learning from delayed rewards[D]. Cambridge: University of Cambridge, 1989.
[10] 罗鹏, 黄珍, 秦易晋, 等. 基于DQN的车辆驾驶行为决策方法[J]. 交通信息与安全, 2020, 38(5): 67-77.
LUO P, HUANG Z, QIN Y J, et al. A method of vehicle driving behavior decision based on DQN algorithm[J]. Journal of Transport Information and Safety, 2020, 38(5): 67-77.
[11] 于士杰, 马冲, 陈见哲. 基于学习的自动驾驶换道决策算法研究进展[J]. 汽车实用技术, 2023, 48(24): 189-194.
YU S J, MA C, CHEN J Z. Research progress of automatic driving lane change decision algorithms based on learning[J]. Automobile Applied Technology, 2023, 48(24): 189-194.
[12] 程诺. 基于改进优先经验回放的DDPG路径规划算法研究[D]. 济南: 山东交通学院, 2024.
CHENG N. Research on DDPG path planning algorithm based on improved prioritized experience replay[D]. Jinan: Shandong Jiaotong University, 2024.
[13] 左思翔. 基于深度强化学习的无人驾驶智能决策控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
ZUO S X. Intelligent control of autonomous driving based on deep reinforcement learning[D]. Harbin: Harbin Institute of Technology, 2018.
[14] 张斌, 何明, 陈希亮, 等. 改进DDPG算法在自动驾驶中的应用[J]. 计算机工程与应用, 2019, 55(10): 264-270.
ZHANG B, HE M, CHEN X L, et al. Self-driving via improved DDPG algorithm[J]. Computer Engineering and Applications, 2019, 55(10): 264-270.
[15] 张雪峰, 王照乙. 基于双决斗深度Q网络的自动换道决策模型[J]. 东北大学学报(自然科学版), 2023, 44(10): 1369-1376.
ZHANG X F, WANG Z Y. Automatic lane change decision model based on dueling double deep Q-network[J]. Journal of Northeastern University (Natural Science), 2023, 44(10): 1369-1376.
[16] 裴晓飞, 莫烁杰, 陈祯福, 等. 基于TD3算法的人机混驾交通环境自动驾驶汽车换道研究[J]. 中国公路学报, 2021, 34(11): 246-254.
PEI X F, MO S J, CHEN Z F, et al. Lane changing of autonomous vehicle based on TD3 algorithm in human-machine hybrid driving environment[J]. China Journal of Highway and Transport, 2021, 34(11): 246-254.
[17] 郑施雨. 自动驾驶车辆换道过程建模与分析[D]. 成都: 西南交通大学, 2018.
ZHENG S Y. Modeling and simulation of the lane-changing execution behavior of autonomous vehicle[D]. Chengdu: Southwest Jiaotong University, 2018.
[18] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285.
[19] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge MA: MIT Press, 2018.
[20] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[21] WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016:1995-2003.
[22] VAN HASSELT, H. Double Q-learning[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems, 2010: 2613-2621.
[23] HASSELT H V, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 2094-2100.
[24] BEHRISCH M, BIEKER L, ERDMANN J, et al. SUMO-simulation of urban mobility: an overview[C]//Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation, 2011.
[25] 秦严严. 交通流分析理论[M]. 北京: 人民交通出版社, 2023.
QIN Y Y. Theory of traffic flow analysis[M]. Beijing: China Communications Press, 2023.
[26] SUN K, ZHAO X M, WU X. A cooperative lane change model for connected and autonomous vehicles on two lanes highway by considering the traffic efficiency on both lanes[J]. Transportation Research Interdisciplinary Perspectives, 2021, 9: 100310.
[27] DE WINKEL K N, IRMAK T, HAPPEE R, et al. Standards for passenger comfort in automated vehicles: acceleration and jerk[J]. Applied Ergonomics, 2023, 106: 103881.
[28] 中华人民共和国国务院. 中华人民共和国道路交通安全法实施条例[S/OL]. (2019)[2024-08-20]. https://www.gov.cn/gongbao/content/2019/content_5468932.htm.
State Council of the People’s Republic of China. Regulations on the implementation of the road traffic safety law of the People’s Republic of China[S/OL]. (2019)[2024-08-20]. https://www.gov.cn/gongbao/content/2019/content_5468932.htm.
[29] WANG J H, FU T, SHANGGUAN Q Q. Wide-area vehicle trajectory data based on advanced tracking and trajectory splicing technologies: potentials in transportation research[J]. Accident Analysis & Prevention, 2023, 186: 107044.
[30] MO S J, PEI X F, CHEN Z F. Decision-making for oncoming traffic overtaking scenario using double DQN[C]//Proceedings of the 2019 3rd Conference on Vehicle Control and Intelligence. Piscataway: IEEE, 2019: 1-4.
[31] CHEN D, JIANG L S, WANG Y, et al. Autonomous driving using safe reinforcement learning by incorporating a regret-based human lane-changing decision model[C]//Proceedings of the 2020 American Control Conference. Piscataway: IEEE, 2020: 4355-4361.
[32] 中华人民共和国公安部. 道路交通拥堵度评价方法: GA/T 115—2020[S]. 北京: 中国标准出版社, 2020.
Ministry of Public Security of the People’s Republic of China. Evaluation methods for road traffic congestion levels: GA/T 115—2020[S]. Beijing: Standards Press of China, 2020. |