计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 352-358.DOI: 10.3778/j.issn.1002-8331.2405-0015

• 工程与应用 • 上一篇    下一篇

联合TCN和时空多头注意机制的车辆轨迹预测模型

宋绍剑,徐佳敏,李刚,李国进   

  1. 广西大学,南宁 530004
  • 出版日期:2025-06-15 发布日期:2025-06-13

Vehicle Trajectory Prediction Model with TCN and Spatial-Temporal Multi-Head Attention Mechanism

SONG Shaojian, XU Jiamin, LI Gang, LI Guojin   

  1. Guangxi University, Nanning 530004, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 车辆轨迹预测为自动驾驶系统提供决策和规划的基础数据,它是自动驾驶过程的一个重要环节。然而,车辆轨迹预测过程存在复杂的空间交互性和时间相关性,给轨迹预测带来了巨大挑战。因此,提出了一种基于时空多头注意机制和时间卷积网络(temporal convolutional network,TCN)的车辆轨迹预测模型。将门控机制和TCN结合,经过多头注意机制后进行堆叠以提取不同层次的时间特征,并分配相应的权重。将相邻车辆的历史轨迹以栅格图的形式进行卷积操作和coordinate attention(CA)操作以提取空间交互特征。预测未来不同机动意图的概率,并将其和提取到的时空特征输入到基于长短期记忆网络(long short-term memory network,LSTM)的解码器中获得未来轨迹。所提模型在下一代仿真(next generation simulation,NGSIM)数据集进行了实验评估。与4种相似模型相比,提出的模型预测误差最高降低了17.8%。

关键词: 车辆轨迹预测, 自动驾驶, 时空多头注意机制, 时空特征

Abstract: Vehicle trajectory prediction provides basic data for decision-making and planning of the automatic driving system, which is an important part of the automatic driving process. However, the process of vehicle trajectory prediction has complex spatial interaction and temporal correlation, which brings great challenges to trajectory prediction. Therefore, a vehicle trajectory prediction model based on temporal convolutional network (TCN) and multi-head attention mechanism is proposed. Firstly, the gating mechanism and TCN are combined, and stacked to extract temporal features of different levels and assign corresponding weights after multi-head attention mechanism. Then, the historical tracks of adjacent vehicles are convolved and coordinate attention (CA) operations are carried out in the form of grid graphs to extract the spatial interaction features. Finally, the probability of different maneuvering intentions in the future is predicted, and the extracted spatial-temporal features are input into the decoder based on the long short-term memory network (LSTM) to obtain the future trajectory. The proposed model is evaluated experimentally on the next generation simulation (NGSIM) dataset. Compared to other four similar models, the prediction error of the proposed model is reduced by up to 17.8%.

Key words: vehicle trajectory prediction, automatic driving, spatial-temporal multiple attention mechanism, spatio-temporal features