[1] 国家统计局. 中国统计年鉴. 2011 (总第30期)[M]. 北京: 中国统计出版社, 2011.
National Bureau of Statistics. Chinese statistical yearbook. 2011 (Total No. 30) [M]. Beijing: China Statistics Press, 2011.
[2] 孟宪伟, 唐进君, 王喆. 考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型[J]. 计算机工程与应用, 2022, 58(13): 280-287.
MENG X W, TANG J J, WANG Z. Trajectory prediction of vehicles based on LSTM-AdaBoost model considering lane-changing intention[J]. Computer Engineering and Applications, 2022, 58(13): 280-287.
[3] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1): 175-185.
[4] HUANG Y J, DU J T, YANG Z R, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674.
[5] ZHANG K P, ZHAO L, DONG C X, et al. AI-TP: attention-based interaction-aware trajectory prediction for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 73-83.
[6] LI Z R, LU C, YI Y T, et al. A hierarchical framework for interactive behaviour prediction of heterogeneous traffic participants based on graph neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9102-9114.
[7] GUO Y H, KALIDINDI V V, ARIEF M, et al. Modeling multi-vehicle interaction scenarios using Gaussian random field[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3974-3980.
[8] MOZAFFARI S, AL-JARRAH O Y, DIANATI M, et al. Deep learning-based vehicle behavior prediction for autonomous driving applications: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 33-47.
[9] ZYNER A, WORRALL S, NEBOT E. A recurrent neural network solution for predicting driver intention at unsignalized intersections[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1759-1764.
[10] LIN L, LI W Z, BI H K, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 197-208.
[11] XUE Q F, LI S Y, LI X P, et al. Hierarchical motion encoder-decoder network for trajectory forecasting[J]. arXiv:2111. 13324, 2021.
[12] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264.
[13] DING W C, CHEN J, SHEN S J. Predicting vehicle behaviors over an extended horizon using behavior interaction network[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 8634-8640.
[14] MESSAOUD K, DEO N, TRIVEDI M M, et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation[C]//Proceedings of the 2021 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2021: 165-170.
[15] LIU Y C, ZHANG J H, FANG L J, et al. Multimodal motion prediction with stacked transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7573-7582.
[16] NIKHIL N, MORRIS B T. Convolutional neural network for trajectory prediction[J]. arXiv:1809.00696, 2018.
[17] STROHBECK J, BELAGIANNIS V, MüLLER J, et al. Multiple trajectory prediction with deep temporal and spatial convolutional neural networks[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 1992-1998.
[18] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1549-15498.
[19] LI X, YING X W, CHUAH M C. GRIP: graph-based interaction-aware trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3960-3966.
[20] HUANG Y F, BI H K, LI Z X, et al. STGAT: modeling spatial-temporal interactions for human trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6271-6280.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[22] HU Y, CHEN X B. Intention-aware transformer with adaptive social and temporal learning for vehicle trajectory prediction[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 3721-3727. |