
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (1): 59-79.DOI: 10.3778/j.issn.1002-8331.2405-0117
孙乐乐,黄松,郑长友,夏春艳,阳真
出版日期:2025-01-01
发布日期:2024-12-30
SUN Lele, HUANG Song, ZHENG Changyou, XIA Chunyan, YANG Zhen
Online:2025-01-01
Published:2024-12-30
摘要: 自动驾驶系统已经成为汽车行业和计算机科学的前沿研究领域。为了确保自动驾驶系统的安全性和可靠性,对自动驾驶系统进行充分的测试是十分必要的,而仿真测试因其测试成本低、安全性高等优点,并且测试场景是自动驾驶仿真测试的关键,因此仿真测试场景生成是自动驾驶测试过程中不可或缺的环节。目前,已有大量学者致力于研究自动驾驶仿真测试,也有许多关于自动驾驶仿真测试的研究进展报告,但是针对于自动驾驶仿真测试场景生成的研究进展报告却寥寥无几。因此,对关于自动驾驶仿真测试场景的文献进行了全面调查,并对自动驾驶仿真测试的相关背景知识进行概述;通过调研国内外几十篇相关文献,按照自动驾驶系统的模块进行归纳总结,对现有仿真测试场景生成方法进行详细分类阐述;通过调研目前主流的仿真测试工具,对现有仿真测试工具进行分析归纳;分析了自动驾驶仿真测试领域面临的挑战和未来展望。
孙乐乐, 黄松, 郑长友, 夏春艳, 阳真. 自动驾驶仿真测试场景生成技术研究进展[J]. 计算机工程与应用, 2025, 61(1): 59-79.
SUN Lele, HUANG Song, ZHENG Changyou, XIA Chunyan, YANG Zhen. Research Progress on Autonomous Driving Simulation Test Scenario Generation Technology[J]. Computer Engineering and Applications, 2025, 61(1): 59-79.
| [1] Baidu. Baidu apollo github repository[EB/OL].[2024-03-20]. https://apollo.baidu.com/. [2] National Highway Traffic Safety Administration (NHTSA). Standing general order on crash reporting[EB/OL]. [2024-03-20]. https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-reporting#data. [3] 蒋拯民, 党少博, 李慧云, 等. 自动驾驶汽车场景测试研究进展综述[J]. 汽车技术,2022(8): 10-22. JIANG Z M, DANG S B, LI H Y, et al. A survey on the research progress of scenario-based testing for autonomous vehicles[J]. Automobile Technology, 2022(8): 10-22. [4] LG. Lgsvl simulator[EB/OL]. [2024-03-20]. https://www. svlsimulator. com/. [5] Carla. Open urban driving simulator[EB/OL]. [2024-03-20]. http://carla.org/. [6] 朱向雷, 王海弛, 尤翰墨, 等. 自动驾驶智能系统测试研究综述[J]. 软件学报, 2021, 32(7): 2056-2077. ZHU X L, WANG H C, YOU H M, et al. Survey on testing of intelligent systems in autonomous vehicles[J]. Journal of Software, 2021, 32(7): 2056-2077. [7] TANG S, ZHANG Z, ZHANG Y, et al. A survey on automated driving system testing: landscapes and trends[J]. ACM Transactions on Software Engineering and Methodology, 2023, 32(5): 1-62. [8] DAFTRY S, ZENG S, BAGNELL J A, et al. Introspective perception: learning to predict failures in vision systems[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: 1743-1750. [9] LU J, SIBAI H, FABRY E, et al. No need to worry about adversarial examples in object detection in autonomous vehicles[J]. arXiv:1707.03501, 2017. [10] GURAU C, RAO D, TONG C H, et al. Learn from experience: probabilistic prediction of perception performance to avoid failure[J]. The International Journal of Robotics Research, 2018, 37(9): 981-995. [11] EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Note on attacking object detectors with adversarial stickers[J]. arXiv:1712.08062, 2017. [12] XIONG C, ZHANG Z, ZHOU Y, et al. IEMT: inequality-based metamorphic testing for autonomous driving models[C]//Proceedings of the 22nd IEEE International Conference on Software Quality, Reliability, and Security, QRS 2022-Companion, Guangzhou, China, 2022: 283-287. [13] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 3213-3223. [14] Udacity. self-driving-car/datasets[EB/OL].[2024-03-20]. https://github.com/udacity/self-driving-car/tree/master/datasets/CH2. [15] GEYER J, KASSAHUN Y, MAHMUDI M, et al. A2D2: audi autonomous driving dataset[J]. arXiv:2004.06320, 2020. [16] DREOSSI T, GHOSH S, SANGIOVANNI-VINCENTELLI A L, et al. Systematic testing of convolutional neural networks for autonomous driving[J]. arXiv:1708.03309, 2017. [17] RAMANAGOPAL M S, ANDERSON C, VASUDEVAN R, et al. Failing to learn: autonomously identifying perception failures for self-driving cars[J]. IEEE Robotics & Automation Letters, 2018, 3(4): 3860-3867. [18] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [19] ZHU Y, MIAO C, HAJIAGHAJANI F, et al. Adversarial attacks against LiDAR semantic segmentation in autonomous driving[C]//Proceedings of the ACM International Conference on Embedded Networked Sensor Systems, 2021: 329-342. [20] BEHLEY J, GARBADE M, MILIOTO A, et al. Semantic-KITTI: a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 9296-9306. [21] YANG Z, HUANG S, ZHENG C, et al. MetaLiDAR: automated metamorphic testing of LiDAR‐based autonomous driving systems[J]. Journal of Software: Evolution and Process, 2023: e2644. [22] ALHAIJA H A, MUSTIKOVELA S K, MESCHEDER L M, et al. Augmented reality meets computer vision: efficient data generation for urban driving scenes[J]. arXiv:1708. 01566, 2017. [23] GAIDON A, WANG Q, CABON Y, et al. Virtual worlds as proxy for multi-object tracking analysis[J]. arXiv:1605.06457, 2016. [24] WANG J, PUN A, TU J, et al. AdvSim: generating safety-critical scenarios for self-driving vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 9909-9918. [25] WANG J, WANG X, SHEN T, et al. Parallel vision for long-tail regularization: initial results from IVFC autonomous driving testing[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 286-299. [26] VISHNU C, KHANDELWAL J, MOHAN C K, et al. EVAA-exchange vanishing adversarial attack on LiDAR point clouds in autonomous vehicles[J]. IEEE Trans Geosci Remote Sens, 2023, 61: 1-10. [27] CAO Y, XIAO C, CYR B, et al. Adversarial sensor attack on lidar-based perception in autonomous driving[J]. arXiv:1907.06826, 2019. [28] LEHNER A, GASPERINI S, MARCOS-RAMIRO A, et al. 3D-VField: adversarial augmentation of point clouds for domain generalization in 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 17274-17283. [29] ZHAO Y, ZHU H, LIANG R, et al. Seeing isn’t believing: towards more robust adversarial attack against real world object detectors[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 1989-2004. [30] CHOI J I, TIAN Q. Adversarial attack and defense of YOLO detectors in autonomous driving scenarios[C]//Proceedings of the 2022 IEEE Intelligent Vehicles Symposium, Aachen, Germany, 2022: 1011-1017. [31] WOODLIEF T, ELBAUM S G, SULLIVAN K. Semantic image fuzzing of AI perception systems[C]//Proceedings of the 44th IEEE/ACM 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 2022: 1958-1969. [32] LAURENT T, ARCAINI P, ISHIKAWA F, et al. A mutation-based approach for assessing weight coverage of a path planner[C]//Proceedings of the 2019 26th Asia-Pacific Software Engineering Conference (APSEC), 2019: 94-101. [33] BAK S, BETZ J, CHAWLA A, et al. Stress testing autonomous racing overtake maneuvers with RRT[C]//Proceedings of the 2022 IEEE Intelligent Vehicles Symposium, Aachen, Germany, 2022: 806-812. [34] KAHN M, SARKAR A, CZARNECKI K. I know you can’t see me: dynamic occlusion-aware safety validation of strategic planners for autonomous vehicles using hypergames[C]//Proceedings of the 2022 International Conference on Robotics and Automation, Philadelphia, PA, USA, 2022: 11202-11208. [35] HUSSAIN M, ALI N, HONG J E. DeepGuard: a framework for safeguarding autonomous driving systems from inconsistent behaviour[J]. Automated Software Engineering, 2021, 29(1): 1. [36] TUNCALI C E, PAVLIC T P, FAINEKOS G. Utilizing S-TaLiRo as an automatic test generation framework for autonomous vehicles[C]//Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016: 1470-1475. [37] CarSim. Mechanical simulation corporation[EB/OL]. [2024-03-20]. https://www.carsim.com/. [38] MICHEL O. WebotsTM: Professional Mobile Robot Simulation[J]. arXiv:cs/0412052, 2004. [39] MATLAB. Programming and numerical computation platform[EB/OL]. [2024-03-20]. https://ww2.mathworks.cn/products/matlab.html. [40] MULLINS G E, STANKIEWICZ P G, GUPTA S K. Automated generation of diverse and challenging scenarios for test and evaluation of autonomous vehicles[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 1443-1450. [41] KNIES C, DIERMEYER F. Data-driven test scenario generation for cooperative maneuver planning on highways[J]. Applied Sciences, 2020, 10(22): 8154. [42] KESTING A, TREIBER M, HELBING D. General lane-changing model MOBIL for car-following models[J]. Transportation Research Record, 2007, 1999: 86-94. [43] 邢星宇, 吴旭阳, 刘力豪, 等. 基于目标优化的自动驾驶决策规划系统自动化测试方法[J]. 同济大学学报 (自然科学版), 2021, 49(8): 1162-1169. XING X Y, WU X Y, LIU L H, et al. Automatic testing method based on optimization algorithms for the decision and planning system of autonomous vehicles[J]. Journal of Tongji University (Natural Science), 2021, 49(8): 1162-1169. [44] JIA L, YANG D, REN Y, et al. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning[J]. Accident Analysis & Prevention, 2024, 194: 107279. [45] TIAN Y, PEI K, JANA S, et al. DeepTest: automated testing of deep-neural-network-driven autonomous cars[C]//Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 2018: 303-314. [46] Rambo. Steering angle model[EB/OL]. [2024-03-20]. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo. [47] Chauffeur. Steering angle model[EB/OL].[2024-03-20].https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur. [48] Epoch. Steering angle model[EB/OL]. [2024-03-20]. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23. [49] ZHANG M, ZHANG Y, ZHANG L, et al. DeepRoad: GAN-based metamorphic autonomous driving system testing[J]. arXiv:1802.02295, 2018. [50] Autumn. Steering angle model[EB/OL].[2024-03-20]. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn. [51] Rwightman. Steering angle model[EB/OL].[2024-03-20].https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation. [52] ZHOU H, LI W, KONG Z, et al. DeepBillboard: systematic physical-world testing of autonomous driving systems[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, South Korea, 2020: 347-358. [53] BOJARSKI M, TESTA D D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[J]. arXiv:1604.07316, 2016. [54] DAVE_V2. A variation of Dave_V1[EB/OL]. [2024-03-20]. https://github.com/jacobgil/keras-steering-angle-visualizations. [55] DAVE_V3. A variation of Dave_V1[EB/OL]. [2024-03-20]. https://github.com/navoshta/behavioral-cloning. [56] LI Z, PAN M, ZHANG T, et al. Testing DNN-based autonomous driving systems under critical environmental conditions[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 6471-6482. [57] Daveorig. End to end learning for self-driving cars[EB/OL]. [2024-03-20]. https://github. com/0bserver07/Nvidia-Autopilot-Keras. [58] Dave-dropout. End to end learning for self-driving cars[EB/OL].[2024-03-20].https://github.com/alexstaravoitau/behavioral-cloning. [59] STOCCO A, WEISS M, CALZANA M, et al. Misbehaviour prediction for autonomous driving systems[C]//Proceedings of the 42nd International Conference on Software Engineering, Seoul, South Korea, 2020: 359-371. [60] DENG Y, LOU G, ZHENG J X, et al. BMT: behavior driven development-based metamorphic testing for autonomous driving models[C]//Proceedings of the 6th IEEE/ACM International Workshop on Metamorphic Testing, Madrid, Spain, 2021: 32-36. [61] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 2015. [62] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [63] DING W, XU C, ARIEF M, et al. A survey on safety-critical driving scenario generation-a methodological perspective[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6971-6988. [64] ZHOU X, SCHMEDDING A, REN H, et al. Strategic safety-critical attacks against an advanced driver assistance system[C]//Proceedings of the 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Baltimore, MD, USA, 2022: 79-87. [65] BIRKEMEYER L, PETT T, VOGELSANG A, et al. Feature-interaction sampling for scenario-based testing of advanced driver assistance systems[C]//Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems, Florence, Italy, 2022: 1-10. [66] ZOHDINASAB T, RICCIO V, GAMBI A, et al. Efficient and effective feature space exploration for testing deep learning systems[J]. ACM Transactions on Software Engineering and Methodology, 2023, 32(2): 1-38. [67] 刘颖, 贺锦鹏, 刘卫国, 等. 自动紧急制动系统行人测试场景的研究[J]. 汽车技术, 2014(3): 35-39. LIU Y, HE J P, LIU W G, et al. Research on test scenarios for AEB pedestrian system[J], Automobile Technology, 2014(3): 35-39. [68] PreScan. Simcenter prescan software[EB/OL].[2024-03-20]. https://plm.sw.siemens.com/en-US/simcenter/autonomous-vehicle-solutions/prescan/. [69] 张强, 黄俊富, 张胜根, 等. 基于自然驾驶数据的APS系统测试评价场景研究[C]//2018中国汽车工程学会年会. 北京: 中国汽车工程学会, 2018: 266-270. ZHANG Q, HUANG J F, ZHANG S G, et al. Study of test and evaluation scenario for assisted parking system based on China-FOT[C]//2018 Annual Meeting of Chinese Society of Automotive Engineering. Beijing: China Society of Automotive Engineers, 2018: 266-270. [70] GAMBI A, MüLLER M, FRASER G. AsFault: testing self-driving car software using search-based procedural content generation[C]//Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings, Montreal, QC, Canada, 2019: 27-30. [71] LI A, CHEN S, SUN L, et al. SceGene: bio-inspired traffic scenario generation for autonomous driving testing[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14859-14874. [72] SUMO. Simulation of urban mobility[EB/OL]. [2024-03-20]. https://sumo.dlr.de/docs/index.html/. [73] ABDESSALEM R B, PANICHELLA A, NEJATI S, et al. Testing autonomous cars for feature interaction failures using many-objective search[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 2018: 143-154. [74] ABDESSALEM R B, NEJATI S, BRIAND L C, et al. Testing vision-based control systems using learnable evolutionary algorithms[C]//Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 2018: 1016-1026. [75] ABDESSALEM R B, PANICHELLA A, NEJATI S, et al. Automated repair of feature interaction failures in automated driving systems[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020: 88-100. [76] TIAN H, JIANG Y, WU G, et al. MOSAT: finding safety violations of autonomous driving systems using multi-objective genetic algorithm[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Singapore, 2022: 94-106. [77] ZHANG C, LIU Y, ZHAO D, et al. RoadView: a traffic scene simulator for autonomous vehicle simulation testing[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems, Qingdao, China, 2014: 1160-1165. [78] CARPIN S, LEWIS M, WANG J, et al. USARSim: a robot simulator for research and education[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007: 1400-1405. [79] KOENIG N P, HOWARD A. Design and use paradigms for Gazebo, an open-source multi-robot simulator[C]//Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 2149-2154. [80] NITSCHE P, THOMAS P, STUETZ R, et al. Pre-crash scenarios at road junctions: a clustering method for car crash data[J]. Accident Analysis & Prevention, 2017, 107: 137-151. [81] FREMONT D J, KIM E, PANT Y V, et al. Formal scenario-based testing of autonomous vehicles: from simulation to the real world[C]//Proceedings of the 23rd IEEE International Conference on Intelligent Transportation Systems, Rhodes, Greece, 2020: 1-8. [82] PONN T, BREITFUSS M, YU X, et al. Identification of challenging highway-scenarios for the safety validation of automated vehicles based on real driving data[C]//Proceedings of the Fifteenth International Conference on Ecological Vehicles and Renewable Energies, Monte-Carlo, Monaco, 2020: 1-10. [83] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 2018: 2118-2125. [84] WANG W, ZHAO D. Extracting traffic primitives directly from naturalistically logged data for self-driving applications[J]. arXiv:1709.03553, 2017. [85] ZHANG W, WANG W. Learning V2V interactive driving patterns at signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 151-166. [86] 陈吉清, 舒孝雄, 兰凤崇, 等. 典型危险事故特征的自动驾驶测试场景构建[J]. 华南理工大学学报 (自然科学版), 2021, 49(5): 1-8. CHEN J Q, SHU X X, LAN F C, et al. Construction of automatic driving test scenarios with typical hazardous accident characteristics[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(5): 1-8. [87] GAMBI A, HUYNH T, FRASER G. Generating effective test cases for self-driving cars from police reports[C]//Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 2019: 257-267. [88] CHEN C, SEFF A, KORNHAUSER A L, et al. DeepDriving: learning affordance for direct perception in autonomous driving[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015: 2722-2730. [89] ZHANG X, CAI Y. Building critical testing scenarios for autonomous driving from real accidents[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 2023: 462-474. [90] 周文帅, 朱宇, 赵祥模, 等. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J]. 汽车技术, 2021(1): 11-18. ZHOU W S, ZHU Y, ZHAO X M, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18. [91] LEILABADI S H, SCHMIDT S. In-depth analysis of autonomous vehicle collisions in california[C]//Proceedings of the International Conference on Intelligent Transportation Systems, 2019: 889-893. [92] WANG S, LI Z. Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches[J]. PLoS One, 2019, 14(3): e0214550. [93] ZAMPETTI F, KAPUR R, PENTA M D, et al. An empirical characterization of software bugs in open-source cyber-physical systems[J]. Journal of Systems and Software, 2022, 192:111425. [94] KLISCHAT M, LIU E I, HOLTKE F, et al. Scenario factory: creating safety-critical traffic scenarios for automated vehicles[C]//Proceedings of the 23rd IEEE International Conference on Intelligent Transportation Systems, Rhodes, Greece, 2020: 1-7. [95] LI G, LI Y, JHA S, et al. AV-FUZZER: finding safety violations in autonomous driving systems[C]//Proceedings of the 31st IEEE International Symposium on Software Reliability Engineering, Coimbra, Portugal, 2020: 25-36. [96] FENG S, FENG Y, YU C, et al. Testing scenario library generation for connected and automated vehicles, part I: methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1573-1582. [97] FENG S, FENG Y, SUN H, et al. Testing scenario library generation for connected and automated vehicles, part II: case studies[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5635-5647. [98] RO J W, ROOP P S, MALIK A, et al. A formal approach for modeling and simulation of human car-following behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 639-648. [99] KIM S, LIU M, RHEE J J, et al. DriveFuzz: discovering autonomous driving bugs through driving quality-guided fuzzing[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 2022: 1753-1767. [100] KATO S, TOKUNAGA S, MARUYAMA Y, et al. Autoware on board: enabling autonomous vehicles with embedded systems[C]//Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, Porto, Portugal, 2018: 287-296. [101] LUO Y, ZHANG X Y, ARCAINI P, et al. Targeting requirements violations of autonomous driving systems by dynamic evolutionary search[C]//Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering, Melbourne, Australia, 2021: 279-291. [102] CHENG M, ZHOU Y, XIE X. BehAVExplor: behavior diversity guided testing for autonomous driving systems[C]//Proceedings of the International Symposium on Software Testing and Analysis, 2023: 488-500. [103] HUAI Y, ALMANEE S, CHEN Y, et al. scenoRITA: generating diverse, fully mutable, test scenarios for autonomous vehicle planning[J]. IEEE Transactions on Software Engineering, 2023, 49(10): 4656-4676. [104] ZHANG X, ZHAO W, SUN Y, et al. Testing automated driving systems by breaking many laws efficiently[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 2023: 942-953. [105] ZHANG Q, HONG D K, ZHANG Z, et al. A systematic framework to identify violations of scenario-dependent driving rules in autonomous vehicle software[C]//Proceedings of the ACM SIGMETRICS. International Conference on Measurement and Modeling of Computer Systems, 2021: 43-44. [106] ZHOU Z Q, SUN L. Metamorphic testing of driverless cars[J]. Communications of the ACM, 2019, 62(3): 61-67. [107] TUNCALI C E, FAINEKOS G. Rapidly-exploring random trees for testing automated vehicles[C]//Proceedings of the International Conference on Intelligent Transportation Systems, 2019: 661-666. [108] ARCAINI P, ZHANG X Y, ISHIKAWA F. Less is more: simplification of test scenarios for autonomous driving system testing[C]//Proceedings of the 15th IEEE Conference on Software Testing, Verification and Validation, Valencia, Spain, 2022: 279-290. [109] DONZé A. Breach, a toolbox for verification and parameter synthesis of hybrid systems[C]//Proceedings of the 22nd International Conference on Computer Aided Verification, Edinburgh, UK, 2010: 167-170. [110] RIZALDI A, KEINHOLZ J, HUBER M, et al. Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL[C]//Proceedings of the 13th International Conference on Integrated Formal Methods, Turin, Italy, 2017: 50-66. [111] BEGLEROVIC H, STOLZ M, HORN M. Testing of autonomous vehicles using surrogate models and stochastic optimization[C]//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems, Yokohama, Japan, 2017: 1-6. [112] KLISCHAT M, ALTHOFF M. Generating critical test scenarios for automated vehicles with evolutionary algorithms[C]//Proceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 2019: 2352-2358. [113] KLüCK F, ZIMMERMANN M, WOTAWA F, et al. Genetic algorithm-based test parameter optimization for ADAS system testing[C]//Proceedings of the 19th IEEE International Conference on Software Quality, Reliability and Security, Sofia, Bulgaria, 2019: 418-425. [114] LEE R, KOCHENDERFER M, MENGSHOEL O, et al. Adaptive stress testing of airborne collision avoidance systems[C]//Proceedings of the 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), 2015: 1-24. [115] KOREN M, ALSAIF S, LEE R, et al. Adaptive stress testing for autonomous vehicles[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium, Changshu, China, 2018: 1-7. [116] JENKINS I R, GEE L O, KNAUSS A, et al. Accident scenario generation with recurrent neural networks[C]//Proceedings of the International Conference on Intelligent Transportation Systems, 2018: 3340-3345. [117] DEMETRIOU A, ALFSV?G H, RAHROVANI S, et al. A deep learning framework for generation and analysis of driving scenario trajectories[J]. SN Computer Science, 2023, 4(3): 251. [118] PRIISALU M, PADURARU C, SMINCHISESCU C. Varied realistic autonomous vehicle collision scenario generation[C]//Proceedings of the 22nd Scandinavian Conference on Image Analysis, 2023: 354-372. [119] ZHONG Z, KAISER G E, RAY B. Neural network guided evolutionary fuzzing for finding traffic violations of autonomous vehicles[J]. IEEE Transactions on Software Engineering, 2023, 49(4): 1860-1875. [120] DENG Y, YAO J, TU Z, et al. TARGET: traffic rule-based test generation for autonomous driving systems[J]. arXiv: 2305.06018, 2023. [121] ZHANG Q, TANG M, GENG R, et al. MMFN: multi-modal-fusion-net for end-to-end driving[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, 2022: 8638-8643. [122] CHEN D, KR?HENBüHL P. Learning from all vehicles[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 17201-17210. [123] 赵祥模国家重点研发计划 (2021YFB2501200) 团队. 自动驾驶测试与评价技术研究进展[J]. 交通运输工程学报, 2023, 23(6): 10-77. ZHAO Xiangmo’s Team Supported by the National Key Research and Development Program of China(2021YFB2501200). Research progress in testing and evaluation technologies for autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 10-77. [124] CarMaker. Vehicle dynamics simulation software[EB/OL]. [2024-03-20]. https://ipg-automotive. com/cn/products-solutions/software/carmaker/. [125] 秦严严. 交通流分析理论[M]. 北京: 人民交通出版社. 2023. QIN Y Y. Theory of traffic flow analysis[M]. Beijing: China Communications Press, 2023. [126] YU H, JIANG R, HE Z, et al. Automated vehicle-involved traffic flow studies: a survey of assumptions, models, speculations, and perspectives[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103101. [127] Vissim. Traffic simulation software[EB/OL].[2024-03-20]. https://www. ptvgroup. com/zh-hant/products/ptv-vissim/. [128] VTD. Complete tool-chain for driving simulation applications[EB/OL].[2024-03-20].https://hexagon.com/products/virtual-test-drive/. [129] Panosim. Integrated simulation test system for automobile automatic driving[EB/OL].[2024-03-20].https://www. panosim.com/. [130] CarCraft. Autonomous driving simulation test software[EB/OL].[2024-03-20]. https://www. waymo. com/. [131] AirSim. A simulation platform for AI research and experimentation[EB/OL].[2024-03-20].https://microsoft. github. io/AirSim/. [132] ZHANG X, TAO J, TAN K, et al. Finding critical scenarios for automated driving systems: a systematic mapping study[J]. IEEE Transactions on Software Engineering, 2023, 49(3): 991-1026. [133] STOCCO A, PULFER B, TONELLA P. Mind the gap! A study on the transferability of virtual vs physical-world testing of autonomous driving systems[J]. arXiv:2112. 11255, 2021. [134] CHEN S T, CHEN Y, ZHANG S, et al. A novel integrated simulation and testing platform for self-driving cars with hardware in the loop[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(3): 425-436. |
| [1] | 杨磊, 陈艳菲, 李海鸣, 石教兴, 安培. 基于改进YOLOv8的自动驾驶场景目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 131-141. |
| [2] | 李春, 吴志周, 许宏鑫, 梁韵逸. 基于多智能体强化学习自动合流控制方法研究[J]. 计算机工程与应用, 2024, 60(23): 349-356. |
| [3] | 李文礼, 李超, 张祎楠, 宋越, 胡雄. 面向自动驾驶测试场景生成的博弈神经网络算法[J]. 计算机工程与应用, 2024, 60(22): 335-346. |
| [4] | 刘云翔, 马海力, 朱建林, 张晴, 金婍. 基于感受野注意力卷积的自动驾驶多任务感知算法[J]. 计算机工程与应用, 2024, 60(20): 133-141. |
| [5] | 厍向阳, 颜唯佳, 董立红. 基于Contextual Transformer的自动驾驶单目3D目标检测[J]. 计算机工程与应用, 2024, 60(19): 178-189. |
| [6] | 罗朝阳, 张荣芬, 刘宇红, 李金, 范润泽. 自动驾驶场景下的行人意图语义VSLAM[J]. 计算机工程与应用, 2024, 60(17): 107-116. |
| [7] | 任佳佳, 柳寅奎, 胡学敏, 向宸, 罗显志. 面向复杂交通场景的自动驾驶运动规划模型[J]. 计算机工程与应用, 2024, 60(15): 91-100. |
| [8] | 肖雨微, 姚溪子, 胡学敏, 罗显志. 面向高密度交通场景的自动驾驶运动规划[J]. 计算机工程与应用, 2024, 60(14): 114-122. |
| [9] | 李春, 吴志周, 曾广, 赵鑫, 杨志丹. 合流区智能网联汽车协同控制方法综述[J]. 计算机工程与应用, 2024, 60(12): 1-17. |
| [10] | 陈商盈, 倪受东, 童林. 改进YOLOX的自动驾驶场景目标检测算法[J]. 计算机工程与应用, 2024, 60(12): 225-233. |
| [11] | 胡淼, 姜麟, 陶友凤, 张志坚. 改进YOLOv7的自动驾驶目标检测算法[J]. 计算机工程与应用, 2024, 60(11): 165-172. |
| [12] | 李文礼, 喻飞, 石晓辉, 唐远航, 杨果. BEV特征下激光雷达和单目相机融合的目标检测算法研究[J]. 计算机工程与应用, 2024, 60(11): 182-193. |
| [13] | 李顺新, 吴桐. 面向自动驾驶的轻量级道路场景语义分割[J]. 计算机工程与应用, 2023, 59(19): 177-183. |
| [14] | 刘辉, 刘鑫满, 刘大东. 面向复杂道路目标检测的YOLOv5算法优化研究[J]. 计算机工程与应用, 2023, 59(18): 207-217. |
| [15] | 汪明明, 陈庆奎, 付直兵. KPP3D:基于关键点信息融合的3D目标检测模型[J]. 计算机工程与应用, 2023, 59(17): 195-204. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||