[1] SU C P, ZHANG C, XIA D, et al. Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem[J]. Applied Soft Computing, 2023, 145: 110596.
[2] BURGGR?F P, WAGNER J, SA?MANNSHAUSEN T, et al. Multi-agent-based deep reinforcement learning for dynamic flexible job shop scheduling[J]. Procedia CIRP, 2022, 112: 57-62.
[3] 李健, 李洹坤, 何鹏博, 等. 协同智能体强化学习算法的柔性作业车间调度方法研究[J]. 系统仿真学报, 2024, 36(11): 2699-2711.
LI J, LI H K, HE P B, et al. Flexible job shop scheduling method based on collaborative agent reinforcement learning algorithm[J]. Journal of System Simulation, 2024, 36(11): 2699-2711.
[4] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013.
[5] 赵也践, 王艳红, 张俊, 等. 改进Q学习算法在作业车间调度问题中的应用[J]. 系统仿真学报, 2022, 34(6): 1247-1258.
ZHAO Y J, WANG Y H, ZHANG J, et al. Application of improved Q learning algorithm in job shop scheduling problem[J]. Journal of System Simulation, 2022, 34(6): 1247-1258.
[6] LUO S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020, 91: 106208.
[7] LIU R K, PIPLANI R, TORO C. A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem[J]. Computers & Operations Research, 2023, 159: 106294.
[8] 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J]. 计算机集成制造系统, 2023, 29(1): 61-74.
HE J J, ZHANG J, ZHANG P, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J]. Computer Integrated Manufacturing Systems, 2023, 29(1): 61-74.
[9] 王霄汉, 张霖, 任磊, 等. 基于强化学习的车间调度问题研究简述[J]. 系统仿真学报, 2021, 33(12): 2782-2791.
WANG X H, ZHANG L, REN L, et al. Brief review on applying reinforcement learning to job shop scheduling problems[J]. Journal of System Simulation, 2021, 33(12): 2782-2791.
[10] ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[11] HAMEED M S A, SCHWUNG A. Reinforcement learning on job shop scheduling problems using graph networks[J]. arXiv:2009.03836, 2020.
[12] YU B, XIE H J, XU Z S. PN-GCN: positive-negative graph convolution neural network in information system to classification[J]. Information Sciences, 2023, 632: 411-423.
[13] 魏琦, 李艳武, 谢辉, 等. 基于图神经网络的柔性作业车间两阶段调度研究[J]. 计算机工程与应用, 2025, 61(11): 342-350.
WEI Q, LI Y W, XIE H, et al. Research on two-stage joint scheduling of flexible job shop based on graph neural network[J]. Computer Engineering and Applications, 2025, 61(11): 342-350.
[14] ZENG Y H, LIAO Z J, DAI Y Z, et al. Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement learning and attention mechanism[J]. arXiv:2201.00548, 2022.
[15] PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377.
[16] CHEN S F, HUANG Z Y, GUO H F. An end-to-end deep learning method for dynamic job shop scheduling problem[J]. Machines, 2022, 10(7): 573.
[17] MINSKY M. Steps toward artificial intelligence[J]. Proceedings of the IRE, 1961, 49(1): 8-30.
[18] ZHAO Y J, WANG Y H, TAN Y Y, et al. Dynamic jobshop scheduling algorithm based on deep Q network[J]. IEEE Access, 2021, 9: 122995-123011.
[19] HAN K, XIAO A, WU E, et al. Transformer in transformer[C]//Advances in Neural Information Processing ?Systems, 2021: 15908-15919.
[20] 张文轩, 殷雁君, 智敏. 用于方面级情感分析的情感增强双图卷积网络[J]. 计算机科学与探索, 2024, 18(1): 217-230.
ZHANG W X, YIN Y J, ZHI M. Affection enhanced dual graph convolution network for aspect based sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 217-230. |