[1] GE Y Q, ZHAO S Y, ZHOU H L, et al. Understanding echo chambers in E-commerce recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 2261-2270.
[2] KERSBERGEN B, SCHELTER S. Learnings from a retail recommendation system on billions of interactions at bol. com[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 2447-2452.
[3] 李宇琦, 陈维政, 闫宏飞, 等. 基于网络表示学习的个性化商品推荐[J]. 计算机学报, 2019, 42(8): 1767-1778.
LI Y Q, CHEN W Z, YAN H F, et al. Learning graph-based embedding for personalized product recommendation[J]. Chinese Journal of Computers, 2019, 42(8): 1767-1778.
[4] PARK M J, LEE K G. Exploiting negative preference in content-based music recommendation with contrastive learning[C]//Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 229-236.
[5] CHANG J X, GAO C, HE X N, et al. Bundle recommendation and generation with graph neural networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(3): 2326-2340.
[6] MA Y S, HE Y Z, ZHANG A, et al. CrossCBR: cross-view contrastive learning for bundle recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1233-1241.
[7] XU F Y, ZHU Z F, LIU P Y, et al. C3BR: category-aware cross-view contrastive learning framework for bundle recommendation[C]//Proceedings of the 28th International Conference on Database Systems for Advanced Applications. Switzerland: Springer Nature, 2023: 194-203.
[8] WANG X, JIN H Y, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1001-1010.
[9] ZHAO S, WEI W, ZOU D, et al. Multi-view intent disentangle graph networks for bundle recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California: AAAI Press, 2022: 4379-4387.
[10] TAN M, CHEN W, WANG W Q, et al. Intention-oriented hierarchical bundle recommendation with preference transfer[C]//Proceedings of the 2021 IEEE International Conference on Web Services. Piscataway: IEEE, 2021: 107-116.
[11] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.
[12] CHEN L, LIU Y, HE X, et al. Matching user with item set: collaborative bundle recommendation with deep attention network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: AAAI Press, 2019: 2095-2101
[13] AVNY BROSH T, LIVNE A, SAR SHALOM O, et al. BRUCE: bundle recommendation using contextualized item embeddings[C]//Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 237-245.
[14] SU C, CHEN M, XIE X Z. Graph convolutional matrix completion via relation reconstruction[C]//Proceedings of the 2021 10th International Conference on Software and Computer Applications. New York: ACM, 2021: 51-56.
[15] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[16] CHEN B, XU Y, ZHEN J R, et al. NRMG: news recommendation with multiview graph convolutional networks[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 2245-2255.
[17] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263.
WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263.
[18] DENG Q L, WANG K, ZHAO M H, et al. Personalized bundle recommendation in online games[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 2381-2388.
[19] WANG N, SUN J B, LI J B. Cross-level relational graph contrastive learning for bundle recommendation[C]//Proceedings of the 2023 IEEE International Conference on Web Services. Piscataway: IEEE, 2023: 112-117.
[20] KE H L, LI L, WANG P P, et al. Tree-like interaction learning for bundle recommendation[C]//Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[21] REN Y Y, ZHANG H N, FU L Y, et al. Distillation-enhanced graph masked autoencoders for bundle recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1660-1669.
[22] WEI W, HUANG C, XIA L H, et al. Contrastive meta learning with behavior multiplicity for recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1120-1128.
[23] YANG H R, CHEN H X, LI L, et al. Hyper meta-path contrastive learning for multi-behavior recommendation[C]//Proceedings of the 2021 IEEE International Conference on Data Mining. Piscataway: IEEE, 2021: 787-796.
[24] WU J H, FAN W Q, CHEN J F, et al. Disentangled contrastive learning for social recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 4570-4574.
[25] CHEN Y J, LIU Z W, LI J, et al. Intent contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2172-2182.
[26] YANG Y H, HUANG C, XIA L H, et al. Debiased contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1063-1073.
[27] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735.
[28] 王永贵, 邹赫宇. 多任务联合学习的图卷积神经网络推荐[J]. 计算机工程与应用, 2024, 60(4): 306-314.
WANG Y G, ZOU H Y. Multi-task joint learning for graph convolutional neural network recommendations[J]. Computer Engineering and Applications, 2024, 60(4): 306-314.
[29] GUO J W, HUANG K Z, YI X P, et al. Learning disentangled graph convolutional networks locally and globally[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3640-3651.
[30] 杜晓宇, 陈正, 项欣光. 基于解耦图神经网络的可解释标签感知推荐算法[J]. 软件学报, 2023, 34(12): 5670-5685.
DU X Y, CHEN Z, XIANG X G. Explainable tag-aware recommendation based on disentangled graph neural network[J]. Journal of Software, 2023, 34(12): 5670-5685.
[31] MA J X, ZHOU C, CUI P, et al Learning disentangled representations for recommendation[C]//Advances in Neural Information Processing Systems, 2019: 5712-5723.
[32] MA J X, CUI P, KUANG K, et al. Disentangled graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York: ACM, 2019: 4212-4221.
[33] LI Y Y, HAO Y J, ZHAO P P, et al. Edge-enhanced global disentangled graph neural network for sequential recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(6): 1-22.
[34] CAO J X, LIN X X, CONG X, et al. DisenCDR: learning disentangled representations for cross-domain recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 267-277.
[35] STEFFEN R, CHRISTOPH F, ZENO G, et al. BPR: bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 452-461.
[36] CAO D, NIE L Q, HE X N, et al. Embedding factorization models for jointly recommending items and user generated lists[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 585-594.
[37] CHEN W, HUANG P P, XU J M, et al. POG: personalized outfit generation for fashion recommendation at alibaba iFashion[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 2662-2670.
[38] YU Z X, LI J T, CHEN L, et al. Unifying multi-associations through hypergraph for bundle recommendation[J]. Knowledge-Based Systems, 2022, 255: 109755.
[39] MA Y S, HE Y Z, WANG X, et al. MultiCBR: multi-view contrastive learning for bundle recommendation[J]. ACM Transactions on Information Systems, 2024, 42(4): 1-23.
[40] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |