计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 196-211.DOI: 10.3778/j.issn.1002-8331.2309-0339

• 模式识别与人工智能 • 上一篇    下一篇

结合对比学习和迭代优化的事件类型归纳方法

冀义豪,任一支,袁理锋,刘容轲,潘高宁   

  1. 杭州电子科技大学 网络空间安全学院,杭州 310018
  • 出版日期:2025-02-01 发布日期:2025-01-24

Event Type Induction Combined with Contrastive Learning and Iterative Optimization

JI Yihao, REN Yizhi, YUAN Lifeng, LIU Rongke, PAN Gaoning   

  1. School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310018, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 事件类型归纳能够从无标注文本中自动发现并命名新事件类型,可以有效获取多个领域的事件知识。现有研究将所有样本视为单一事件样本,仅考虑样本包含的某个事件类型,忽略了多事件样本对事件语义学习和事件类型命名的负面影响。针对上述问题,提出了一种结合对比学习和迭代优化的事件类型归纳方法。针对多事件样本对事件语义学习的影响,提出了一种基于提示学习的多事件检测方法,在模型训练前检测并剔除多事件样本。为了优化事件语义表示,提出了一种基于抽象语义表示(abstract meaning representation,AMR)的候选触发词识别策略,并引入外部锚点和聚类伪标签,优化对比学习训练效果。为了提升未知事件类型的命名质量,提出了一种基于ChatGPT反馈的事件类型命名迭代优化方法,根据ChatGPT的命名结果,剔除影响事件类型命名的样本,并使用经过处理的数据集微调模型。迭代上述过程,直到生成预期质量的事件类型名称。在ACE2005数据集上的实验结果表明,该方法能够显著提升未知事件类型的聚类效果,并能够有效生成高质量的事件类型名称。

关键词: 事件类型归纳, 对比学习, 大型语言模型

Abstract: Event type induction is the task of automatically discovering and naming new event types from unlabeled text, enabling the acquisition of event knowledge across multiple domains. Existing research treats all samples as single-event samples, considering only the specific event type contained within each sample, thus overlooking the negative impact of multi-event samples on event semantic learning and event type naming. To address these issues, this paper proposes a new method combined with contrastive learning and iterative optimization.  Firstly, to mitigate the influence of multi-event samples on event semantic learning, a prompt-based multi-event detection method is introduced to detect and exclude multi-event samples prior to model training. Secondly, to optimize event semantic representations, a candidate trigger word recognition strategy based on abstract meaning representation (AMR) is proposed, along with the incorporation of external anchors and cluster pseudo-labels to enhance the effectiveness of contrastive learning training. Finally, to improve the quality of naming unknown event types, an iterative optimization method for event type naming is proposed. Based on the naming results from ChatGPT, samples that affect event type naming are filtered out, and the model is fine-tuned using the processed dataset. This iterative process continues until event type names of the desired quality are generated. Experimental results on the ACE2005 dataset show that the proposed method significantly enhances the clustering performance of unknown event types and effectively generates high-quality event type names.

Key words: event type induction, contrastive learning, large language model