[1] LIU Y, LI Z, PAN S, et al. Anomaly detection on attributed networks via contrastive self-supervised learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2378-2392.
[2] LIU N, HUANG X, HU X. Accelerated local anomaly detection via resolving attributed networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2337-2343.
[3] AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 626-688.
[4] XU Z, HUANG X, ZHAO Y, et al. Contrastive attributed network anomaly detection with data augmentation[C]//Proceedings of the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2022: 444-457.
[5] ROOPAK, SHAH, EDUARD, et al. Signature verification using a “siamese” time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4): 669-688.
[6] BREUNIG M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104.
[7] PEROZZI B, AKOGLU L. Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2016: 207-215.
[8] ZHANG M, CHEN Y. Weisfeiler-Lehman neural machine for link prediction[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 575-583.
[9] 罗世杰, 吕文韬, 李凡, 等. 融合拓扑和属性的动态网络链路预测方法[J]. 计算机工程与应用, 2023, 59(5): 122-130.
LUO S J, LYU W T, LI F, et al. Dynamic network link prediction method for fusion topology and attributes[J]. Computer Engineering and Applications, 2023, 59(5): 122-130.
[10] GAO J, LIANG F, FAN W, et al. On community outliers and their efficient detection in information networks[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 813-822.
[11] 吴越, 王英, 王鑫, 等. 基于超图卷积的异质网络半监督节点分类[J]. 计算机学报, 2021, 44(11): 2248-2260.
WU Y, WANG Y, WANG X, et al. Motif-based hypergraph convolution network for semi-supervised node classification on heterogeneous graph[J]. Chinese Journal of Computers, 2021, 44(11): 2248-2260.
[12] ABU-EL-HAIJA S, KAPOOR A, PEROZZI B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification[C]// Proceedings of the 35th Uncertainty in Artificial Intelligence Conference: Vol 115. New York: PMLR, 2020: 841-851.
[13] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
[14] 李忠, 靳小龙, 王亚杰, 等. 属性网络中基于变分图自编码器的异常节点检测方法[J]. 模式识别与人工智能, 2022, 35(1): 17-25.
LI Z, JIN X L, WANG Y J, et al. Anomaly node detection method based on variational graph auto-encoders in attribute networks [J]. Pattern Recognition and Artificial Intelligence, 2022, 35(1): 17-25.
[15] LI J, DANI H, HU X, et al. Radar: residual analysis for anomaly detection in attributed networks[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2152-2158.
[16] ZHU D, MA Y, LIU Y. Anomaly detection with deep graph autoencoders on attributed networks[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC). Piscataway: IEEE, 2020: 1-6.
[17] FAN H, ZHANG F, LI Z. AnomalyDAE: dual autoencoder for anomaly detection on attributed networks[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2020: 5685-5689.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2017: 6000-6010.
[19] DING K, LI J, BHANUSHALI R, et al. Deep anomaly detection on attributed networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2019: 594-602.
[20] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[21] 张伊扬, 钱育蓉, 陶文彬, 等. 基于深度学习的属性图异常检测综述[J]. 计算机工程与应用, 2022, 58(19): 1-13.
ZHANG Y Y, QIAN Y R, TAO W B, et al. Survey of attribute graph anomaly detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(19): 1-13.
[22] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning. New York: PMLR, 2020: 1597-1607.
[23] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[J]. arXiv:1809.10341, 2018.
[24] PENG Z, HUANG W, LUO M, et al. Graph representation learning via graphical mutual information maximization[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 259-270.
[25] ZHU Y, XU Y, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080.
[26] CHEN F, WANG Y C, WANG B, et al. Graph representation learning: a survey[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9: e15.
[27] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1067-1077.
[28] TONG H, FALOUTSOS C, PAN J Y. Fast random walk with restart and its applications[C]//Proceedings of the Sixth International Conference on Data Mining (ICDM’06). Piscataway: IEEE, 2006: 613-622.
[29] TANG L, LIU H. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 817-826.
[30] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93.
[31] TANG J, ZHANG J, YAO L, et al. ArnetMiner: extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 990-998.
[32] JIN M, LIU Y, ZHENG Y, et al. ANEMONE: graph anomaly detection with multi-scale contrastive learning[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 3122-3126.
[33] DEECKE L, RUFF L, VANDERMEULEN R A, et al. Deep anomaly detection by residual adaptation[J]. arXiv:2010.02310, 2020.
[34] PANG G, SHEN C, JIN H, et al. Deep weakly-supervised anomaly detection[J]. arXiv:1910.13601, 2019.
[35] PENG Z, LUO M, LI J, et al. ANOMALOUS: a joint modeling approach for anomaly detection on attributed networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3513-3519.
[36] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |