[1] 梁义涛, 韩永波, 李磊. 深度长时目标跟踪算法综述[J]. 计算机工程与应用, 2023, 59(4): 1-17.
LIANG Y T, HAN Y B, LI L. Survey on deep-learning-based long-term object tracking algorithms[J]. Computer Engineering and Applications, 2023, 59(4): 1-17.
[2] THANGAVEL J, KOKUL T, RAMANAN A, et al. Transformers in single object tracking: an experimental survey[J]. arXiv:2302.11867, 2023.
[3] MARVASTI-ZADEH S M, CHENG L, GHANEI YAKHDAN H, et al. Deep learning for visual tracking: a comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3943-3968.
[4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[5] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 9992-10002.
[6] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 6181-6190.
[7] FU Zhihong, FU Zehua, LIU Q J, et al. SparseTT: visual tracking with sparse transformers[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2022: 905-912.
[8] XIE F, WANG C, WANG G, et al. Correlation-aware deep tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 8741-8750.
[9] YE B, CHANG H, MA B, et al. Joint feature learning and?relation modeling for?tracking: a one-stream framework[J]. arXiv:2203.11991, 2022.
[10] LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980.
[11] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[12] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[13] 崔振东, 李宗民, 杨树林, 等. 基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142.
CUI Z D, LI Z M, YANG S L, et al. 3D object detection based on semantic segmentation guidance[J]. Journal of Graphics, 2022, 43(6): 1134-1142.
[14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[16] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[17] 洪培钦, 罗灵鲲, 刘冰, 等. 引入轻量注意力的孪生神经网络目标跟踪算法[J]. 计算机工程与应用, 2022, 58(12): 112-121.
HONG P Q, LUO L K, LIU B, et al. Siamese neural network target tracking algorithm with lightweight attention[J]. Computer Engineering and Applications, 2022, 58(12): 112-121.
[18] WU Y, LIM J, YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
[19] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for uav tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 445-461.
[20] FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 5369-5378.
[21] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
[22] HUANG L, ZHAO X, HUANG K. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
[23] WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021.
[24] DANELLJAN M, BHAT G, KHAN F S, et al. Atom: accurate tracking by overlap maximization[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 4655-4664.
[25] CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021: 8122-8131.
[26] YU Y, XIONG Y, HUANG W, et al. Deformable siamese attention networks for visual object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6727-6736.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5999-6009.
[28] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision, 2014: 740-755.
[29] MüLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European Conference on Computer Vision, 2018: 310-327.
[30] KINGMA D P, BA J L. ADAM: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-15.
[31] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 850-865.
[32] CAO Z, FU C, YE J, et al. HiFT: hierarchical feature transformer for aerial tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 15437-15446.
[33] CAO Z, HUANG Z, PAN L, et al. TCTrack: temporal contexts for aerial tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 14778-14788.
[34] CHEN Z, ZHONG B, LI G, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6667-6676.
[35] GUO D, WANG J, CUI Y, et al. SiamCAR: siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6268-6276.
[36] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 4277-4286.
[37] GUO D, SHAO Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021: 9538-9547.
[38] TANG F, LING Q. Ranking-based siamese visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 8731-8740.
[39] ZHANG Z, PENG H, FU J, et al. Ocean: object-aware anchor-free tracking[J]. arXiv:2006.10721, 2020. |