计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 177-185.DOI: 10.3778/j.issn.1002-8331.2309-0363

• 模式识别与人工智能 • 上一篇    下一篇

基于特征增强的光学遥感视频多目标跟踪算法

刘晨,陈实,陈红珍   

  1. 1.中国科学院 国家空间科学中心 复杂航天系统综合电子与信息技术重点实验室,北京 100190
    2.中国科学院大学 计算机科学与技术学院,北京 100049
  • 出版日期:2025-02-01 发布日期:2025-01-24

Multi-Object Tracking Algorithm Based on Feature Enhancement in Optical Remote Sensing Videos

LIU Chen, CHEN Shi, CHEN Hongzhen   

  1. 1.Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
    2.School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 高分辨率视频卫星的出现为遥感视频目标的检测和跟踪提供了重要数据源,在灾害检测、军事侦察等领域都有重要作用。针对遥感视频复杂地物背景下目标尺寸弱小、目标特征相似、云雾遮挡和背景噪声干扰导致目标误检、误跟、漏跟问题,提出基于特征增强的光学遥感视频多目标跟踪算法FE-MOT,设计了基于边缘特征增强的特征提取网络,在微小目标缺乏纹理特征的情况下更好地融合语义与空间特征,通过构建基于交叉熵损失和中心损失的Re-ID分支结构,提高了对具有相似特征的微小目标的可分性。在吉林一号遥感视频多目标跟踪数据集AIR-MOT上的实验结果表明,FE-MOT在原模型的基础上MOTA提高了14.28个百分点,IDF1提高了15.47个百分点,FN降低了24个百分点,对于遥感视频多目标跟踪中目标身份维持能力和跟踪稳定性有显著提升,在2个Tesla T4 GPU上的运行速度达到19.9?FPS,满足实时运行的需要。

关键词: 视频卫星, 多目标跟踪, 联合检测跟踪

Abstract: The emergence of high-resolution video satellites provides an important data source for the detection and tracking of remote sensing video targets, and plays an important role in disaster detection, military reconnaissance and other fields. Aiming at the problems of false detection, false tracking and missed tracking caused by small target size, similarity of the targets, cloud obstruction, and background noise interference in remote sensing videos with complex ground objects, a multi-target tracking algorithm named FE-MOT for optical remote sensing videos based on feature enhancement is proposed. The feature extraction network based on edge feature enhancement is designed to efficiently integrate both semantic and spatial features under the lack of texture features of small targets. By constructing a Re-ID branch structure based on cross-entropy loss and center loss, it improves the separability of small targets with similar characteristics. Experimental results on the Jilin-1 remote sensing video multi-target tracking dataset AIR-MOT show that FE-MOT improves MOTA, IDF1 and FN by 14.28, 15.47 and 24?percentage points respectively compared with the original model, which helps to improve the  target identity maintenance capability and tracking stability of the multiple targets in remote sensing videos significantly. And the running speed on two Tesla T4 GPUs reaches 19.9?FPS, meeting the requirements for real-time operation.

Key words: satellite video, multi-object tracking, joint detection and tracking