[1] FENG J, ZENG D, JIA X, et al. Cross-frame keypoint-based and spatial motion information-guided networks for moving vehicle detection and tracking in satellite videos[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177: 116-130.
[2] 袁益琴, 何国金, 江威, 等. 遥感视频卫星应用展望[J]. 自然资源遥感, 2018, 30(3): 1-8.
YUAN Y Q, HE G J, JIANG W, et al. Application of earth observation system of video satellite[J]. Remote Sensing for Natural Resources, 2018, 30(3): 1-8.
[3] LUO W, XING J, MILAN A, et al. Multiple object tracking: a literature review[J]. Artificial Intelligence, 2021, 293: 103448.
[4] BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the IEEE 2016 IEEE International Conference on Image Processing (ICIP), 2016: 3464-3468.
[5] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the IEEE 2017 IEEE International Conference on Image Processing (ICIP), 2017: 3645-3649.
[6] ZHU J, YANG H, LIU N, et al. Online multi-object tracking with dual matching attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 366-382.
[7] DAI P, WENG R, CHOI W, et al. Learning a proposal classifier for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2443-2452.
[8] HE J, HUANG Z, WANG N, et al. Learnable graph matching: incorporating graph partitioning with deep feature learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5299-5309.
[9] 袁德平, 史浩山, 郑娟毅. 用于多目标数据关联的群智能混合算法[J]. 华南理工大学学报 (自然科学版), 2012, 40(9): 97-103.
YUAN D P, SHI H S, ZHENG J Y. Hybrid swarm intelligent algorithm for multi-target data association[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(9): 97-103.
[10] YANG F, ODASHIMA S, MASUI S, et al. Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 4799-4808.
[11] QIN Z, ZHOU S, WANG L, et al. MotionTrack: learning robust short-term and long-term motions for multi-object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17939-17948.
[12] BERGMANN P, MEINHARDT T, LEAL-TAIXE L. Tracking without bells and whistles[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 941-951.
[13] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, 2020: 107-122.
[14] ZHOU X, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, 2020: 474-490.
[15] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and Re-IDentification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[16] ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[C]//Proceedings of the European Conference on Computer Vision, 2022: 1-21.
[17] WANG Y, KITANI K, WENG X. Joint object detection and multi-object tracking with graph neural networks[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13708-13715.
[18] WU J, SU X, YUAN Q, et al. Multivehicle object tracking in satellite video enhanced by slow features and motion features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-26.
[19] YIN Q, HU Q, LIU H, et al. Detecting and tracking small and dense moving objects in satellite videos: a benchmark[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-18.
[20] HE Q, SUN X, YAN Z, et al. Multi-object tracking in satellite videos with graph-based multitask modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[21] XIAO C, WU S, WANG Y, et al. RSMOT: remote sensing multi-object tracking network with local motion prior for objects in satellite videos[C]//Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), 2022: 1904-1907.
[22] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
[23] ZHANG T, CHEN H, CHEN S, et al. Edge-enhanced efficient network for remote sensing image super-resolution[J]. International Journal of Remote Sensing, 2022, 43(14): 5324-5347.
[24] YU F, WANG D, SHEHHAMER E, et al. Deep layer aggregation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2403-2412.
[25] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[26] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 2016: 499-515.
[27] MUNKRES J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38.
[28] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008: 246309. |