计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 141-153.DOI: 10.3778/j.issn.1002-8331.2403-0231

• 模式识别与人工智能 • 上一篇    下一篇

基于关键句和题型的阅读理解问题生成技术研究

蒋玉茹,陶宇阳,王霞,葛诗利   

  1. 1.北京信息科技大学 智能信息处理研究所,北京 100192
    2.北京信息科技大学 外国语学院,北京 100192
    3.广东外语外贸大学 语言与人工智能重点实验室,广州 510420
  • 出版日期:2025-06-15 发布日期:2025-06-13

Research on Reading Comprehension Question Generation Technique Based on Key Sentences and Question Types

JIANG Yuru, TAO Yuyang, WANG Xia, GE Shili   

  1. 1.Intelligent Information Processing Institute, Beijing Information Science and Technology University, Beijing 100192, China
    2.School of Foreign Studies, Beijing Information Science and Technology University, Beijing 100192, China
    3.Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou 510420, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 现有的阅读理解问题生成技术研究主要以答案已知为前提展开。为了使阅读理解问题生成技术可以摆脱对答案的依赖,从而促使教育领域的问题生成技术向着端到端自动化出题的应用场景进一步迈进,对答案未知前提下的阅读理解问题生成技术展开了研究。提出引入关键句和题型作为两种简单的控制信息,替代需要从文章中抽取总结的答案,规定问题的提问内容范围和提问特点。提出了一个基于关键句和题型信息的可控问题生成框架,通过给定文章、关键句和题型来生成阅读理解问题。通过自动化评测和人工评测,验证了框架包含的两种问题生成方法的有效性和先进性。框架所需的两种控制信息相比答案更容易获取,为问题生成技术的应用带来更好的易用性,为使用者提供更高的出题效率。

关键词: 英语阅读理解, 问题生成, 文本生成

Abstract: The existing reading comprehension question generation methods are mostly answer-aware, mainly based on the premise that the answers are known. To enhance the applicability of reading comprehension question generation techniques within the educational domain towards the goal of end-to-end automated question generation, this study investigates the reading comprehension question generation method under the premise that answers are unknown. This study adopts key sentences and question types as two simple control signals instead of extracting and summarizing answers from the passage to specify the scope and phrasing of the questions. This study proposes a controllable question generation framework to generate reading comprehension questions by providing certain passages, key sentences and question types. Both automated and human evaluations verify the effectiveness and advancement of the two question generation methods included in the framework. The control signals required by the framework is easier to obtain than answers, which improves user experience of question generation techniques and provides users with higher question generation efficiency.

Key words: English reading comprehension, question generation, text generation