
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 42-60.DOI: 10.3778/j.issn.1002-8331.2409-0274
陈宇,权冀川
出版日期:2025-04-01
发布日期:2025-04-01
CHEN Yu, QUAN Jichuan
Online:2025-04-01
Published:2025-04-01
摘要: 伪装目标检测(camouflaged object detection,COD)是计算机视觉领域的一项挑战性任务,致力于识别那些与周围环境高度融合、伪装或隐蔽的目标,主要分为基于手工特征和基于深度学习2种范式。研究人员从单一特征和多特征融合2个角度分析了26种基于手工特征的方法;按发表年份和任务类型梳理了131个在2019年至2024年第二季度期间提出的深度COD模型来揭示其发展现状;基于3种模型调用模式和3类工作方式,分别详细分析了各类深度COD方法的优势与不足;总结了COD的常用数据集、数据增强技术和评价指标,并基于实验对27种前沿的图像级深度COD模型进行了性能评估。基于上述研究探讨了伪装目标检测面临的挑战和未来的发展方向。
陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60.
CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges[J]. Computer Engineering and Applications, 2025, 61(7): 42-60.
| [1] MONDAL A. Camouflaged object detection and tracking: a survey[J]. International Journal of Image and Graphics, 2020, 20(4): 2050028. [2] BI H B, ZHANG C, WANG K, et al. Rethinking camouflaged object detection: models and datasets[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5708-5724. [3] 何淋艳, 王安志, 任春洪, 等. 伪装目标检测与分割研究进展[J]. 软件导刊, 2022, 21(3): 237-243. HE L Y, WANG A Z, REN C H, et al. Research advances in camouflage object detection and segmentation[J]. Software Guide, 2022, 21(3): 237-243. [4] 史彩娟, 任弼娟, 王子雯, 等. 基于深度学习的伪装目标检测综述[J]. 计算机科学与探索, 2022, 16(12): 2734-2751. SHI C J, REN B J, WANG Z W, et al. Survey of camouflaged object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2734-2751. [5] 张冬冬, 王春平, 付强. 伪装目标检测研究进展[J]. 激光杂志, 2024, 45(3): 1-13. ZHANG D D, WANG C P, FU Q. Research developments in camouflage object detection[J]. Laser Journal, 2024, 45(3): 1-13. [6] FAN D P, JI G P, XU P, et al. Advances in deep concealed scene understanding[J]. Visual Intelligence, 2023, 1(1): 16. [7] LIANG Y H, QIN G H, SUN M H, et al. A systematic review of image-level camouflaged object detection with deep learning[J]. Neurocomputing, 2024, 566: 127050. [8] BOOT W R, NEIDER M B, KRAMER A F. Training and transfer of training in the search for camouflaged targets[J]. Attention, Perception & Psychophysics, 2009, 71(4): 950-963. [9] GALUN M, SHARON E, BASRI R, et al. Texture segmentation by multiscale aggregation of filter responses and shape elements[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2003: 716-723. [10] SONG L M, GENG W D. A new camouflage texture evaluation method based on WSSIM and nature image features[C]//Proceedings of the 2010 International Conference on Multimedia Technology. Piscataway: IEEE, 2010: 1-4. [11] YIN J Q, HAN Y B, HUO W D, et al. Detection of the mobile object with camouflage color under dynamic background based on optical flow[J]. Procedia Engineering, 2011, 15: 2201-2205. [12] 周静, 窦一民, 李金屏. 基于光流场分割的伪装色运动目标检测[J]. 济南大学学报(自然科学版), 2020, 34(4): 328-334. ZHOU J, DOU Y M, LI J P. Camouflage color moving object detection based on optical flow field segmentation[J]. Journal of University of Jinan(Science and Technology), 2020, 34(4): 328-334. [13] LU H M, WANG X C, LIU S Z, et al. The possible mechanism underlying visual anti-camouflage: a model and its real-time simulation[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 1999, 29(3): 314-318. [14] CONTE D, FOGGIA P, PERCANNELLA G, et al. An algorithm for detection of partially camouflaged people[C]//Proceedings of the 2009 6th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2009: 340-345. [15] TANKUS A, YESHURUN Y. Detection of regions of interest and camouflage breaking by direct convexity estimation[C]//Proceedings 1998 IEEE Workshop on Visual Surveillance. Piscataway: IEEE, 2002: 42-48. [16] TANKUS A, YESHURUN Y. Convexity-based visual camouflage breaking[J]. Computer Vision and Image Understanding, 2001, 82(3): 208-237. [17] PAN Y X, CHEN Y W, FU Q, et al. Study on the camouflaged target detection method based on 3D convexity[J]. Modern Applied Science, 2011, 5(4): 152. [18] 武国晶, 吕绪良, 邢海宁, 等. 三维凸面分析法在迷彩伪装检测中的应用[J]. 解放军理工大学学报(自然科学版), 2015(6): 582-586. WU G J, LYU X L, XING H N, et al. Application of three-dimensional convex analysis in pattern painting camouflage detection[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2015(6): 582-586. [19] 梁新宇, 林浩坤, 杨辉, 等. 迷彩伪装目标图像语义分割数据集的构建[J]. 激光与光电子学进展, 2021, 58(4): 214-220. LIANG X Y, LIN H K, YANG H, et al. Construction of semantic segmentation dataset of camouflage target image[J]. Laser & Optoelectronics Progress, 2021, 58(4): 214-220. [20] 叶松, 马源, 张玉婷, 等. 基于偏振融合的伪装目标识别方法研究[J]. 激光杂志, 2020, 41(10): 25-28. YE S, MA Y, ZHANG Y T, et al. Research on camouflage target recognition method based on polarization fusion[J]. Laser Journal, 2020, 41(10): 25-28. [21] ?OZA A, MIHAYLOVA L, BULL D, et al. Structural similarity-based object tracking in multimodality surveillance videos[J]. Machine Vision and Applications, 2009, 20(2): 71-83. [22] LI S, FLORENCIO D, ZHAO Y Q, et al. Foreground detection in camouflaged scenes[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 4247-4251. [23] LI S, FLORENCIO D, LI W Q, et al. A fusion framework for camouflaged moving foreground detection in the wavelet domain[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3918-3930. [24] SHAH P, REDDY B C S, MERCHANT S N, et al. Context enhancement to reveal a camouflaged target and to assist target localization by fusion of multispectral surveillance videos[J]. Signal, Image and Video Processing, 2013, 7(3): 537-552. [25] KAVITHA C, RAO B P, GOVARDHAN A. An efficient content based image retrieval using color and texture of image sub blocks[J]. International Journal of Engineering Science and Technology, 2011, 3(2): 1060-1068. [26] 鲜晓东, 李克文. 基于颜色和纹理特征的伪装色矿工目标检测[J]. 计算机应用, 2013, 33(2): 539-542. XIAN X D, LI K W. Detection of camouflaged miner objects based on color and texture features[J]. Journal of Computer Applications, 2013, 33(2): 539-542. [27] SIRICHAROEN P, ARAMVITH S, CHALIDABHONGSE T H, et al. Robust outdoor human segmentation based on color-based statistical approach and edge combination[C]//Proceedings of the 2010 International Conference on Green Circuits and Systems. Piscataway: IEEE, 2010: 463-468. [28] MITTAL A, PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2004. [29] BHAJANTRI N U, NAGABHUSHAN P. Camouflage defect identification: a novel approach[C]//Proceedings of the 9th International Conference on Information Technology. Piscataway: IEEE, 2006: 145-148. [30] ZHOU P C, LIU C C. Camouflaged target separation by spectral-polarimetric imagery fusion with shearlet transform and clustering segmentation[C]//Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications, 2013. [31] KIM S. Unsupervised spectral-spatial feature selection-based camouflaged object detection using VNIR hyperspectral camera[J]. The Scientific World Journal, 2015, 2015(1): 834635. [32] MANGALE S, KHAMBETE M. Camouflaged target detection and tracking using thermal infrared and visible spectrum imaging[C]//Proceedings of the International Symposium on Intelligent Systems Technologies and Applications. Cham: Springer, 2016: 193-207. [33] LIU Z, HUANG K Q, TAN T N. Foreground object detection using top-down information based on EM framework[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4204-4217. [34] LE T N, NGUYEN T V, NIE Z L, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45-56. [35] QIN X B, FAN D P, HUANG C Y, et al. Boundary-aware segmentation network for mobile and web applications[J]. arXiv:2101.04704, 2021. [36] SUN Y J, CHEN G, ZHOU T, et al. Context-aware cross-level fusion network for camouflaged object detection[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence, 2021: 1025-1031. [37] LIU J W, ZHANG J, BARNES N. Confidence-aware learning for camouflaged object detection[J]. arXiv:2106.11641, 2021. [38] WANG K, BI H B, ZHANG Y, et al. D2C-Net: a dual-branch, dual-guidance and cross-refine network for camouflaged object detection[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5364-5374. [39] XIANG M C, ZHANG J, LV Y Q, et al. Exploring depth contribution for camouflaged object detection[J]. arXiv:2106.13217, 2021. [40] REN J J, HU X W, ZHU L, et al. Deep texture-aware features for camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(3): 1157-1167. [41] DONG B, ZHU M C, WANG Y X, et al. Accurate camouflaged object detection via mixture convolution and interactive fusion[J/OL]. [2024-09-19]. https://api.semanticscholar.org/CorpusID:235211723. [42] YAN J N, LE T N, NGUYEN K D, et al. MirrorNet: bio-inspired camouflaged object segmentation[J]. IEEE Access, 2021, 9: 43290-43300. [43] MEI H Y, JI G P, WEI Z Q, et al. Camouflaged object segmentation with distraction mining[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8772-8781. [44] KAJIURA N, LIU H, SATOH S, et al. Improving camouflaged object detection with the uncertainty of pseudo-edge labels[C]//Proceedings of the 3rd ACM International Conference on Multimedia in Asia. New York: ACM, 2022: 1-7. [45] LV Y Q, ZHANG J, DAI Y C, et al. Simultaneously localize, segment and rank the camouflaged objects[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11586-11596. [46] FAN D P, JI G P, SUN G L, et al. Camouflaged object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2774-2784. [47] ZHU J C, ZHANG X Y, ZHANG S, et al. Inferring camouflaged objects by texture-aware interactive guidance network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3599-3607. [48] JI G P, ZHU L, ZHUGE M C, et al. Fast camouflaged object detection via edge-based reversible re-calibration network[J]. Pattern Recognition, 2022, 123: 108414. [49] ZHAI Q, LI X, YANG F, et al. Mutual graph learning for camouflaged object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12992-13002. [50] YANG F, ZHAI Q, LI X, et al. Uncertainty-guided transformer reasoning for camouflaged object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4126-4135. [51] LI A X, ZHANG J, LV Y Q, et al. Uncertainty-aware joint salient object and camouflaged object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10066-10076. [52] ZHU Q H. ACDNet with ASPP for camouflaged object detection[J]. Journal of Physics: Conference Series, 2021, 1982(1): 012082. [53] LE T N, CAO Y B, NGUYEN T C, et al. Camouflaged instance segmentation in-the-wild: dataset, method, and benchmark suite[J]. IEEE Transactions on Image Processing, 2022, 31: 287-300. [54] LAMDOUAR H, YANG C, XIE W D, et al. Betrayed by motion: camouflaged object discovery via motion segmentation[C]//Proceedings of the Computer Vision-ACCV 2020. New York: ACM, 2020: 488-503. [55] CHENG X L, XIONG H, FAN D P, et al. Implicit motion handling for video camouflaged object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13854-13863. [56] CHENG Y, HAO H Z, JI Y, et al. Attention-based neighbor selective aggregation network for camouflaged object detection[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. [57] FAN D P, JI G P, CHENG M M, et al. Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6024-6042. [58] LIU Z Y, ZHANG Z L, TAN Y C, et al. Boosting camouflaged object detection with dual-task interactive transformer[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 140-146. [59] YIN B, ZHANG X, FAN D P, et al. CamoFormer: masked separable attention for camouflaged object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10362-10374. [60] ZHANG C, WANG K, BI H B, et al. Camouflaged object detection via neighbor connection and hierarchical information transfer[J]. Computer Vision and Image Understanding, 2022, 221: 103450. [61] ZHUGE M C, LU X K, GUO Y Y, et al. CubeNet: X-shape connection for camouflaged object detection[J]. Pattern Recognition, 2022, 127: 108644. [62] SUN W, LIU C G, ZHANG L Y, et al. DQnet: cross-model detail querying for camouflaged object detection[J]. arXiv: 2212.08296, 2022 . [63] CHOU M C, CHEN H J, SHUAI H H. Finding the achilles heel: progressive identification network for camouflaged object detection[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6. [64] LI P, YAN X F, ZHU H W, et al. FindNet: can you find me? boundary-and-texture enhancement network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2022, 31: 6396-6411. [65] ZHOU T, ZHOU Y, GONG C, et al. Feature aggregation and propagation network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2022, 31: 7036-7047. [66] ZHU H W, LI P, XIE H R, et al. I can find you! boundary-guided separated attention network for camouflaged object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 3608-3616. [67] XU X Q, CHEN S H, LV X, et al. Guided multi-scale refinement network for camouflaged object detection[J]. Multimedia Tools and Applications, 2023, 82(4): 5785-5801. [68] JIA Q, YAO S L, LIU Y, et al. Segment, Magnify and reiterate: detecting camouflaged objects the hard way[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4703-4712. [69] PANG Y W, ZHAO X Q, XIANG T Z, et al. Zoom in and out: a mixed-scale triplet network for camouflaged object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2150-2160. [70] HE R Z, DONG Q H, LIN J Y, et al. Weakly-supervised camouflaged object detection with scribble annotations[J]. arXiv:2207.14083, 2022. [71] SUN Y J, WANG S, CHEN C, et al. Boundary-guided camouflaged object detection[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, 2022: 1335-1341. [72] HE C Y, XU L F, QIU Z H. Eldnet: establishment and refinement of edge likelihood distributions for camouflaged object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 621-625. [73] PARK K B, LEE J Y. TCU-Net: transformer and convolutional neural network-based advanced U-Net for concealed object detection[J]. IEEE Access, 2022, 10: 122347-122360. [74] JI G P, FAN D P, CHOU Y C, et al. Deep gradient learning for efficient camouflaged object detection[J]. Machine Intelligence Research, 2023, 20(1): 92-108. [75] HU X B, WANG S, QIN X B, et al. High-resolution iterative feedback network for camouflaged object detection[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence and 35th Conference on Innovative Applications of Artificial Intelligence and 13th Symposium on Educational Advances in Artificial Intelligence, 2023: 881-889. [76] ZHENG D H, ZHENG X C, YANG L T, et al. MFFN: multi-view feature fusion network for camouflaged object detection[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6221-6231. [77] ZHANG Q, GE Y L, ZHANG C, et al. TPRNet: camouflaged object detection via transformer-induced progressive refinement network[J]. The Visual Computer, 2023, 39(10): 4593-4607. [78] LV Y Q, ZHANG J, DAI Y C, et al. Toward deeper understanding of camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3462-3476. [79] LI C, JIAO G. EINet: camouflaged object detection with pyramid vision transformer[J]. Journal of Electronic Imaging, 2022, 31(5): 053002. [80] LIU J W, ZHANG J, BARNES N. Modeling aleatoric uncertainty for camouflaged object detection[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 2613-2622. [81] CHEN G, LIU S J, SUN Y J, et al. Camouflaged object detection via context-aware cross-level fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6981-6993. [82] PEI J L, CHENG T Y, FAN D P, et al. OSFormer: one-stage camouflaged instance segmentation with Transformers[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 19-37. [83] ZHANG Q, SUN X X, CHEN Y R, et al. Attention-induced semantic and boundary interaction network for camouflaged object detection[J]. Computer Vision and Image Understanding, 2023, 233: 103719. [84] YU J H, CHEN S H, LU L, et al. Alternate guidance network for boundary-aware camouflaged object detection[J]. Machine Vision and Applications, 2023, 34(4): 69. [85] LIU Y, ZHANG K H, ZHAO Y Q, et al. Bi-RRNet: bi-level recurrent refinement network for camouflaged object detection[J]. Pattern Recognition, 2023, 139: 109514. [86] XIAO J, CHEN T Y, HU X G, et al. Boundary-guided context-aware network for camouflaged object detection[J]. Neural Computing and Applications, 2023, 35(20): 15075-15093. [87] JIANG X H, CAI W, DING Y, et al. Camouflaged object detection based on ternary cascade perception[J]. Remote Sensing, 2023, 15(5): 1188. [88] LI X F, LI H Y, ZHOU H, et al. Camouflaged object detection with counterfactual intervention[J]. Neurocomputing, 2023, 553: 126530. [89] WANG T, WANG J, WANG R H. Camouflaged object detection with a feature lateral connection network[J]. Electronics, 2023, 12(12): 2570. [90] HE C M, LI K, ZHANG Y C, et al. Camouflaged object detection with feature decomposition and edge reconstruction[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22046-22055. [91] ZHANG C, BI H B, XIANG T Z, et al. Collaborative camouflaged object detection: a large-scale dataset and benchmark[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-15. [92] SUN Y Q, MA L D, SHOU P Y, et al. Dynamic interactive refinement network for camouflaged object detection[J]. Neural Computing and Applications, 2024, 36(7): 3433-3446. [93] XIANG J J, PAN Q, ZHANG Z R, et al. Double-branch fusion network with a parallel attention selection mechanism for camouflaged object detection[J]. Science China Information Sciences, 2023, 66(6): 162403. [94] LIU M Z, DI X G. Extraordinary MHNet: military high-level camouflage object detection network and dataset[J]. Neurocomputing, 2023, 549: 126466. [95] SUN D Y, JIANG S Y, QI L. Edge-aware mirror network for camouflaged object detection[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2465-2470. [96] HUANG Z, DAI H, XIANG T Z, et al. Feature shrinkage pyramid for camouflaged object detection with transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5557-5566. [97] XIE C X, XIA C Q, YU T S, et al. Frequency representation integration for camouflaged object detection[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1789-1797. [98] CONG R M, SUN M Y, ZHANG S Y, et al. Frequency perception network for camouflaged object detection[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1179-1189. [99] SUN G L, AN Z C, LIU Y, et al. Indiscernible object counting in underwater scenes[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13791-13801. [100] SONG Z, KANG X D, WEI X H, et al. FSNet: focus scanning network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 2267-2278. [101] LI A X, ZHANG J, LV Y Q, et al. Joint salient object detection and camouflaged object detection via uncertainty-aware learning[J]. arXiv:2307.04651, 2023. [102] LIU Y, LI H H, CHENG J, et al. MSCAF-Net: a general framework for camouflaged object detection via learning multi-scale context-aware features[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4934-4947. [103] LI X F, YANG J X, LI S H, et al. Locate, refine and restore: a progressive enhancement network for camouflaged object detection[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023: 1116-1124. [104] ZHANG Y, ZHANG J, HAMIDOUCHE W, et al. Predictive uncertainty estimation for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 3580-3591. [105] WANG X, ZHANG Z, GAO J. Polarization-based camouflaged object detection[J]. Pattern Recognition Letters, 2023, 174: 106-111. [106] SONG Z, KANG X D, WEI X H, et al. Pixel-centric context perception network for camouflaged object detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-14. [107] XING H Z, GAO S Y, TANG H, et al. TINYCOD: tiny and effective model for camouflaged object detection[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [108] DENG Y Y, MA J X, LI Y J, et al. Ternary symmetric fusion network for camouflaged object detection[J]. Applied Intelligence, 2023, 53(21): 25216-25231. [109] LI H R, FENG C M, XU Y, et al. Zero-shot camouflaged object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 5126-5137. [110] 郝子强, 张庆宝, 赵世豪, 等. 融合多尺度交叉注意力和边缘感知的伪装目标检测[J/OL]. 计算机工程与应用, 2024: 1-12(2024-04-19) [2024-09-19]. https://kns.cnki. net/kcms/detail/11.2127.TP.20240418.1517.010.html. HAO Z Q, ZHANG Q B, ZHAO S H, et al. Camouflaged target detection based on multi-scale cross-attention and edge perception[J/OL]. Computer Engineering and Applications, 2024: 1-12(2024-04-19) [2024-09-19]. https://kns.cnki.net/kcms/detail/11.2127.TP.20240418.1517.010.html. [111] CHEN T R, ZHU L Y, DING C, et al. SAM fails to segment anything? —Sam-adapter: adapting SAM in underperformed scenes: camouflage, shadow, medical image segmentation, and more[J]. arXiv.2304.09148, 2023. [112] JIANG X H, CAI W, DING Y, et al. Camouflaged object segmentation based on joint salient object for contrastive learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5023816. [113] YANG X, ZHU H L, MAO G J, et al. OAFormer: occlusion aware transformer for camouflaged object detection[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 1421-1426. [114] XING H Z, GAO S Y, WANG Y, et al. Go closer to see better: camouflaged object detection via object area amplification and figure-ground conversion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5444-5457. [115] SONG Y X, LI X Y, QI L. Camouflaged object detection with feature grafting and distractor aware[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2459-2464. [116] ZHANG Q, YAN W Q. CFANet: a cross-layer feature aggregation network for camouflaged object detection[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2441-2446. [117] ZHAI W, CAO Y, XIE H Y, et al. Deep texton-coherence network for camouflaged object detection[J]. IEEE Transactions on Multimedia, 2022, 25: 5155-5165. [118] CHEN Z X, SUN K, LIN X M. CamoDiffusion: camouflaged object detection via conditional diffusion models[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 1272-1280. [119] CHEN Z N, GAO R R, XIANG T Z, et al. Diffusion model for camouflaged object detection[J]. arXiv:2308.00303, 2023. [120] LUO Z Y, LIU N, ZHAO W B, et al. VSCode: general visual salient and camouflaged object detection with 2D prompt learning[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 17169-17180. [121] CHENG S P, JI G P, QIN P D, et al. Large model based referring camouflaged object detection[J]. arXiv.2311.17122, 2023. [122] ZHANG X Y, YIN B, LIN Z, et al. Referring camouflaged object detection[J]. arXiv:2306.07532, 2023. [123] LE M Q, TRAN M T, LE T N, et al. Unveiling Camouflage: a learnable Fourier-based augmentation for camouflaged object detection and instance segmentation[J]. arXiv:2308. 15660, 2023. [124] PANG Y W, ZHAO X Q, XIANG T Z, et al. ZoomNeXt: a unified collaborative pyramid network for camouflaged object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9205-9220. [125] LUO N S, PAN Y W, SUN R, et al. Camouflaged instance segmentation via explicit de-camouflaging[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 17918-17927. [126] SONG X G, ZHANG P F, LU X F, et al. A universal multi-view guided network for salient object and camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 11184-11197. [127] MA M, SUN B Y. A cross-level interaction network based on scale-aware augmentation for camouflaged object detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 69-81. [128] HAO C, YU Z T, LIU X, et al. A simple yet effective network based on vision transformer for camouflaged object and salient object detection[J]. arXiv:2402.18922, 2024. [129] CHEN Z N, ZHANG X Y, XIANG T Z, et al. Adaptive guidance learning for camouflaged object detection[J]. arXiv:2405.02824, 2024. [130] ZHANG Q, YAN W Q, ZHAO Y L, et al. AFINet: camouflaged object detection via attention fusion and interaction network[J]. Journal of Visual Communication and Image Representation, 2024, 102: 104208. [131] WANG A Z, REN C H, ZHAO S, et al. Attention guided multi-level feature aggregation network for camouflaged object detection[J]. Image and Vision Computing, 2024, 144: 104953. [132] KHAN A, KHAN M, GUEAIEB W, et al. CamoFocus: enhancing camouflage object detection with split-feature focal modulation and context refinement[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 1423-1432. [133] ZHANG C, BI H B, MO D S, et al. CCNet: collaborative camouflaged object detection via decoder-induced information interaction and supervision refinement network[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108328. [134] LIU X R, QI L, SONG Y X, et al. Depth awakens: a depth-perceptual attention fusion network for RGB-D camouflaged object detection[J]. Image and Vision Computing, 2024, 143: 104924. [135] BI H B, TONG Y Y, ZHANG J Y, et al. Depth alignment interaction network for camouflaged object detection[J]. Multimedia Systems, 2024, 30(1): 51. [136] ZHOU X F, WU Z C, CONG R M. Decoupling and integration network for camouflaged object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 7114-7129. [137] YUE G H, XIAO H L, XIE H, et al. Dual-constraint coarse-to-fine network for camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(5): 3286-3298. [138] SUN H, ZHANG C. Double-branch camouflaged object detection method based on intra-layer and inter-layer information integration[J]. IEEE Access, 2024, 12: 81057-81066. [139] IKE C S, MUHAMMAD N, BIBI N, et al. Discriminative context-aware network for camouflaged object detection[J]. Frontiers in Artificial Intelligence, 2024, 7: 1347898. [140] LIU X G, SONG S. Depth context aggregation network for camouflaged object detection[J]. Multimedia Tools and Applications, 2024, 83(31): 75689-75708. [141] HU X H, ZHANG X L, WANG F S, et al. Efficient camouflaged object detection network based on global localization perception and local guidance refinement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(7): 5452-5465. [142] LIU Z J, DENG X H, JIANG P, et al. Edge perception camouflaged object detection under frequency domain reconstruction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(10): 10194-10207. [143] LIANG W Y, WU J S, WU Y F, et al. FINet: frequency injection network for lightweight camouflaged object detection[J]. IEEE Signal Processing Letters, 2024, 31: 526-530. [144] WANG X, DING J J, ZHANG Z, et al. IPNet: polarization-based camouflaged object detection via dual-flow network[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107303. [145] HE C M, LI K, ZHANG Y C, et al. Strategic preys make acute predators: enhancing camouflaged object detectors by generating camouflaged objects[J]. arXiv:2308.03166, 2023. [146] GUAN J W, FANG X L, ZHU T X, et al. SDRNet: camouflaged object detection with independent reconstruction of structure and detail[J]. Knowledge-Based Systems, 2024, 299: 112051. [147] LYU Y X, ZHANG H, LI Y, et al. UEDG: uncertainty-edge dual guided camouflage object detection[J]. IEEE Transactions on Multimedia, 2023, 26: 4050-4060. [148] TANG Z, TANG J, ZOU D P, et al. Two guidance joint network based on coarse map and edge map for camouflaged object detection[J]. Applied Intelligence, 2024, 54(15): 7531-7544. [149] LUO C, WU J H, SUN S X, et al. TransCODNet: underwater transparently camouflaged object detection via RGB and event frames collaboration[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1444-1451. [150] LIANG W Y, WU J S, MU X Y, et al. Weighted dense semantic aggregation and explicit boundary modeling for camouflaged object detection[J]. IEEE Sensors Journal, 2024, 24(13): 21108-21122. [151] 赖杰, 彭锐晖, 孙殿星, 等. 融合注意力机制与多检测层结构的伪装目标检测[J]. 中国图象图形学报, 2024, 29(1): 134-146. LAI J, PENG R H, SUN D X, et al. Detection of camouflage targets based on attention mechanism and multi-detection layer structure[J]. Journal of Image and Graphics, 2024, 29(1): 134-146. [152] 梅海洋, 杨鑫, 周运铎, 等. 分心感知的伪装物体分割[J]. 中国科学: 信息科学, 2024, 54(3): 653-673. MEI H Y, YANG X, ZHOU Y D, et al. Distraction-aware camoufaged object segmentation[J]. Scientia Sinica(Informationis), 2024, 54(3): 653-673. [153] 徐国明, 陈奇志, 刘綦, 等. 基于集中注意力接受场网络的偏振成像伪装目标检测[J]. 计算机应用研究, 2024, 41(9): 2854-2859. XU G M, CHEN Q Z, LIU Q, et al. Polarization imaging camouflage target detection based on focused attention receptive field network[J]. Application Research of Computers, 2024, 41(9): 2854-2859. [154] 史彩娟, 赵琳, 任弼娟, 等. 双主干伪装目标检测网络[J]. 北京交通大学学报, 2024, 48(2): 57-67. SHI C J, ZHAO L, REN B J, et al. Camouflaged object detection with dual backbone[J]. Journal of Beijing Jiaotong University, 2024, 48(2): 57-67. [155] LI Q Y, WANG Z J, ZHANG X N, et al. Lightweight camouflaged object detection model based on multilevel feature fusion[J]. Complex & Intelligent Systems, 2024, 10(3): 4409-4419. [156] ZHANG D D, WANG C P, FU Q. Efficient camouflaged object detection via progressive refinement network[J]. IEEE Signal Processing Letters, 2023, 31: 231-235. [157] 孙帮勇, 施雨含, 于涛. 面向战场伪装目标探测的语义引导偏振光谱图像融合方法[J]. 光学学报, 2024, 44(19): 129-141. SUN B Y, SHI Y H, YU T. Semantic-guided polarization spectral image fusion method for camouflage target detection [J]. Acta Optica Sinica, 2024, 44(19): 129-141. [158] 沈英, 黄伟达, 周则兵, 等. 基于特征波段偏振成像的差异增强伪装目标检测[J]. 兵工学报, 2024, 45(10): 3488-3498. SHEN Y, HUANG W D, ZHOU Z B, et al. Contrast enhancement for camouflage target detection based on feature band polarization imaging[J]. Acta Armamentarii, 2024, 45(10): 3488-3498. [159] 袁昊, 葛海波, 辛世澳, 等. 基于深度纹理特征的伪装目标边缘细化检测[J]. 计算机工程, 2024, 50(10): 89-99. YUAN H, GE H B, XIN S A, et al. Edge refinement detection of camouflage targets based on deep texture features[J]. Computer Engineering , 2024, 50(10): 89-99. [160] 何文昊, 葛海波, 程梦洋, 等. 边缘注意力及反向定位的伪装目标检测算法[J]. 计算机工程与应用, 2024, 60(7): 229-237. HE W H, GE H B, CHENG M Y, et al. Camouflage object detection algorithm based on edge attention and reverse orientation[J]. Computer Engineering and Applications, 2024, 60(7): 229-237. [161] HUI W J, ZHU Z F, GU G H, et al. Implicit-explicit motion learning for video camouflaged object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 7188-7196. [162] ZHANG X, XIAO T, JI G P, et al. Explicit motion handling and interactive prompting for video camouflaged object detection[J]. arXiv:2403.01968, 2024. [163] HUI W J, ZHU Z F, ZHENG S, et al. Endow SAM with keen eyes: temporal-spatial prompt learning for video camouflaged object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 19058-19067. [164] MEERAN M N, ADETHYA T G, MANTHA B P. SAM-PM: enhancing video camouflaged object detection using spatio-temporal attention[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2024: 1857-1866. [165] KRICHEN M. Generative adversarial networks[C]//Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies. Piscataway: IEEE, 2023: 1-7. [166] HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851. [167] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. [168] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558. [169] WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. [170] WU Y H, LIU Y, ZHAN X, et al. P2T: pyramid pooling transformer for scene understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12760-12771. [171] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [172] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations, 2021. [173] LIU L, ZHANG N, WAN K Y, et al. Visual saliency transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 4702-4712. [174] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. [175] CASTELLANI A P, CASARI P, ZORZI M. TinyNET: a tiny network framework for TinyOS: description, implementation, and experimentation[J]. Wireless Communications and Mobile Computing, 2010, 10(1): 101-114. [176] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946, 2019. [177] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3992-4003. [178] TANG L, XIAO H K, LI B, et al. Can SAM segment anything? When SAM meets camouflaged object detection[J]. arXiv:2304.04709, 2023. [179] SKUROWSKI P, ABDULAMEER H, BLASZCZYK J, et al. Animal camouflage analysis: ZCHAMELEON database[EB/OL]. [2024-09-19]. https://www.polsl.pl/rau6/chameleon-database-animal-camouflage-analysis. [180] MARCELO J G, AZCARRAGA A P. Generative adversarial networks for improving object detection in camouflaged images[C]//Proceedings of the International Conference on Neural Information Processing. Cham: Springer, 2020: 426-433. [181] ZHAO P C, XU P, QIN P D, et al. LAKE-RED: camouflaged images generation by latent background knowledge retrieval-augmented diffusion[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 4092-4101. [182] MARGOLIN R, ZELNIK-MANOR L, TAL A. How to evaluate foreground maps[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 248-255. [183] FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4558-4567. [184] FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 698-704. [185] PERAZZI F, KR?HENBüHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 733-740. [186] ISLAM M A, KALASH M, BRUCE N D B. Revisiting salient object detection: simultaneous detection, ranking, and subitizing of multiple salient objects[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7142-7150. [187] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. [188] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [189] ZOU X Y, YANG J W, ZHANG H, et al. Segment everything everywhere all at once[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. New York: ACM, 2024: 19769-19782. [190] WANG X L, ZHANG X S, CAO Y, et al. SegGPT: towards segmenting everything in context[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1130-1140. |
| [1] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [2] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [3] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [4] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [5] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [6] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [7] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [8] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [9] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [10] | 林娜, 岳希, 唐聃. 基于数据增强和损失平衡的机电领域命名实体识别[J]. 计算机工程与应用, 2025, 61(7): 222-232. |
| [11] | 刘红玉, 高见. 融合CBAM的违法犯罪类安卓恶意软件检测与分类模型研究[J]. 计算机工程与应用, 2025, 61(6): 317-327. |
| [12] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [13] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| [14] | 王敬凯, 秦董洪, 白凤波, 李路路, 孔令儒, 徐晨. 语音识别与大语言模型融合技术研究综述[J]. 计算机工程与应用, 2025, 61(6): 53-63. |
| [15] | 侯颖, 胡鑫, 赵瑞瑞, 张楠, 徐艳红, 马莉. 感兴趣区域YOLO_BFROI的扶梯乘客安全检测算法[J]. 计算机工程与应用, 2025, 61(6): 84-95. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||