2024.
[49] ZHANG M Y, YU Y, GU L M, et al. VM-UNET-V2 rethinking vision Mamba UNet for medical image segmentation[J]. arXiv:2403.09157, 2024.
[50] WANG Z, ZHENG J Q, ZHANG Y, et al. Mamba-UNet: UNet-like pure visual Mamba for medicalimage segmentation[J]. arXiv:2402.07245, 2024.
[51] LIU J R, YANG H, ZHOU H Y, et al. Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining[J]. arXiv: 2402. 03302, 2024.
[52] WU R K, LIU Y H, LIANG P C, et al. UltraLight VM-UNet: parallel vision Mamba significantly reduces parameters for skin lesion segmentation[J]. arXiv:2403.20035, 2024.
[53] XING Z H, YE T, YANG Y J, et al. SegMamba: long-range sequential modeling Mamba for 3D medical image segmentation[J]. arXiv:2401.13560, 2024.
[54] WANG J, CHEN J, CHEN D, et al. Large window-based Mamba unet for medical image segmentation: beyond convolution and self-attention[J]. arXiv:2305.03678, 2023.
[55] ZHANG Y, JIAO R. Towards segment anything model(SAM) for medical image segmentation: a survey[J]. arXiv:2305.03678, 2023.
[56] WANG D, ZHANG J, DU B, et al. SAMRS: scaling-up remote sensing segmentation dataset with segment anything model[J]. arXiv:2305.02034, 2023.
[57] TANG L, XIAO H K, LI B. Can SAM segment anything? when SAM meets camouflaged object detection[J]. arXiv: 2304.04709, 2023.
[58] HE S, BAO R N, LI J P, et al. Computer-vision benchmark segment-anything model(SAM) in medical images: accuracy in 12 datasets[J]. arXiv:2304.09324, 2023.
[59] HU M Z, LI Y H, YANG X F. SkinSAM: empowering skin cancer segmentation with segment anything model[J]. arXiv:2304.13973, 2023.
[60] LI Y H, HU M Z, YANG X F. Polyp-SAM: transfer SAM for polyp segmentation[J]. arXiv:2305.00293, 2023.
[61] MA J, HE Y T, LI F F, et al. Segment anything in medical images[J]. Nature Communications, 2024, 15(1): 654.
[62] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[63] WU J D, JI W, LIU Y P, et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[J]. arXiv:2304.12620, 2023.
[64] CHENG J L, YE J, DENG Z Y, et al. SAM-Med2D[J]. arXiv:2308.16184, 2023.
[65] ZHANG J W, MA K, KAPSE S, et al. SAM-path: a segment anything model for semantic segmentation in digital pathology[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2023: 161-170.
[66] WANG H, GUO S, YE J, et al. SAM-Med3D[J]. arXiv: 2310.15161, 2023.
[67] ZHANG Y C, YANG J, LIU Y C, et al. SemiSAM: enhancing semi-supervised medical image segmentation via SAM-assisted consistency regularization[J]. arXiv:2312.06316, 2023.
[68] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[69] GUO J X, LU S D, CAI H, et al. Long text generation via adversarial training with leaked information[J]. arXiv:1709.
08624, 2017.
[70] LI S J, ZHANG Y F, YANG X. Semi-supervised cardiac MRI segmentation based on generative adversarial network and variational auto-encoder[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, 2021: 1402-1405.
[71] HUNG W C, TSAI Y H, LIOU Y T, et al. Adversarial learning for semi-supervised semantic segmentation[J]. arXiv: 1802.07934, 2018.
[72] GUAN H, YAP P T, BOZOKI A, et al. Federated learning for medical image analysis: a survey[J]. Pattern Recognition, 2024, 151: 110424.
[73] LI Y Q, WANG D D, YUAN C, et al. Enhancing agricultural image segmentation with an agricultural segment anything model adapter[J]. Sensors, 2023, 23(18): 7884.
[74] LI G J, HUANG Q H, WANG W, et al. Selective and multi-scale fusion Mamba for medical image segmentation[J]. Expert Systems with Applications, 2025, 261: 125518.
[75] PUTZ F, BEIRAMI S, SCHMIDT M A, et al. The segment anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning[J]. arXiv:2304.07875, 2023.
[76] 孙兴, 蔡肖红, 李明, 等. 视觉大模型SAM在医学图像分割中的应用综述[J]. 计算机工程与应用, 2024, 60(17): 1-16.
SUN X, CAI X H, LI M, et al. Review of application of visual foundation model SAM in medical image segmentation[J]. Computer Engineering and Applications, 2024, 60(17): 1-16.
[77] HUANG Z, BIANCHI F, YUKSEKGONUL M, et al. A visual-language foundation model for pathology image analysis using medical Twitter[J]. Nature Medicine, 2023, 29(9): 2307-2316. |