[1] YAO L G, HUANG H S, WANG K W, et al. Fine-grained mechanical Chinese named entity recognition based on ALBERT-AttBiLSTM-CRF and transfer learning[J]. Symmetry, 2020, 12(12): 1986.
[2] 陈秋瑗, 程光, 李迪, 等. 机械设计领域的命名实体识别研究[J]. 计算机工程与应用, 2017, 53(20): 100-104.
CHEN Q Y, CHENG G, LI D, et al. Named entity recognition for mechanical design and manufacturing area[J]. Computer Engineering and Applications, 2017, 53(20): 100-104.
[3] NADEAU D, SEKINE S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007, 30(1): 3-26.
[4] HUANG C, WANG Y Z, YU Y Q, et al. Chinese named entity recognition of geological news based on BERT model[J]. Applied Sciences, 2022, 12(15): 7708.
[5] TAN M Y, BAO F L, GAO G L, et al. An attention-based approach for Mongolian news named entity recognition[C]//Proceedings of the 18th China National Conference on Chinese Computational Linguistics. Cham: Springer International Publishing, 2019: 424-435.
[6] WANG C Y, WANG H, ZHUANG H, et al. Chinese medical named entity recognition based on multi-granularity semantic dictionary and multimodal tree[J]. Journal of Biomedical Informatics, 2020, 111: 103583.
[7] SHI J T, SUN M X, SUN Z Y, et al. Multi-level semantic fusion network for Chinese medical named entity recognition[J]. Journal of Biomedical Informatics, 2022, 133: 104144.
[8] ZHANG Q H, HOU L, LV P T, et al. Chinese medical entity recognition model based on character and word vector fusion[J]. Scientific Programming, 2021, 2021(1): 1-12.
[9] 张智源, 孙水华, 徐诗傲, 等. 基于BERT和多窗口门控CNN的电机领域命名实体识别[J]. 计算机应用研究, 2023, 40(1): 107-114.
ZHANG Z Y, SUN S H, XU S A, et al. Named entity recognition in motor field based on BERT and multi-window gated CNN[J]. Application Research of Computers, 2023, 40(1): 107-114.
[10] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[11] YAN S, CHAI J P, WU L Y. Bidirectional GRU with multi-head attention for Chinese NER[C]//Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2020: 1160-1164.
[12] LAFFERTY J. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, 2001.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[14] CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491.
[15] ZHENG G P. Research on the recognition of Chinese named entity based on rules and statistics[J]. Information Science, 2012, 30(5): 708-712.
[16] ZHOU G D, SU J, ZHOU G D, et al. Named entity recognition using an HMM-based chunk tagger[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. New York: ACM, 2002: 473-480.
[17] LIU J G, XIA C H, YAN H H, et al. Innovative deep neural network modeling for fine-grained Chinese entity recognition[J]. Electronics, 2020, 9(6): 1001.
[18] LEE C. LSTM-CRF models for named entity recognition[J]. IEICE Transactions on Information and Systems, 2017, 100(4): 882-887.
[19] GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 4982-4988.
[20] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv: 1301.3781, 2013.
[21] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2023.
[22] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv:1802.05365, 2018.
[23] 郭振东, 林民, 李成城, 等. 基于BERT-CRF的领域词向量生成研究[J]. 计算机工程与应用, 2022, 58(21): 156-162.
GUO Z D, LIN M, LI C C, et al. Research on domain-specific word vector generation based on BERT-CRF[J]. Computer Engineering and Applications, 2022, 58(21): 156-162.
[24] 康怡琳, 孙璐冰, 朱容波, 等. 深度学习中文命名实体识别研究综述[J]. 华中科技大学学报(自然科学版), 2022, 50(11): 44-53.
KANG Y L, SUN L B, ZHU R B, et al. Survey on Chinese named entity recognition with deep learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(11): 44-53.
[25] 李军怀, 陈苗苗, 王怀军, 等. 基于ALBERT-BGRU-CRF的中文命名实体识别方法[J]. 计算机工程, 2022, 48(6): 89-94.
LI J H, CHEN M M, WANG H J, et al. Chinese named entity recognition method based on ALBERT-BGRU-CRF[J]. Computer Engineering, 2022, 48(6): 89-94.
[26] LV X, XIE Z, XU D X, et al. Chinese named entity recognition in the geoscience domain based on BERT[J]. Earth and Space Science, 2022, 9(3): e2021EA002166.
[27] YANG L, FU Y F, DAI Y. BIBC: a Chinese named entity recognition model for diabetes research[J]. Applied Sciences, 2021, 11(20): 9653.
[28] 马晓琴, 郭小鹤, 薛峪峰, 等. 针对命名实体识别的数据增强技术[J]. 华东师范大学学报(自然科学版), 2021, 55(5): 14-23.
MA X Q, GUO X H, XUE Y F, et al. Data augmentation technology for named entity recognition[J]. Journal of East China Normal University (Natural Science), 2021, 55(5): 14-23.
[29] 刘兴丽, 范俊杰, 马海群. 面向小样本命名实体识别的数据增强算法改进策略研究[J]. 数据分析与知识发现, 2022, 6(10): 128-141.
LIU X L, FAN J J, MA H Q. Improvement of data augment algorithm for named entity recognition with small samples[J]. Data Analysis and Knowledge Discovery, 2022, 6(10): 128-141.
[30] 李健, 张克亮, 唐亮, 等. 面向中文命名实体识别任务的数据增强[J]. 计算机与现代化, 2022(4): 1-6.
LI J, ZHANG K L, TANG L, et al. Data augmentation for Chinese named entity recognition task[J]. Computer and Modernization, 2022(4): 1-6.
[31] 杨鹤, 于红, 刘巨升, 等. 基于BERT+BiLSTM+CRF深度学习模型和多元组合数据增广的渔业标准命名实体识别[J]. 大连海洋大学学报, 2021, 36(4): 661-669.
YANG H, YU H, LIU J S, et al. Fishery standard named entity recognition based on BERT+BiLSTM+CRF deep learning model and multivariate combination data augmentation[J]. Journal of Dalian Ocean University, 2021, 36(4): 661-669.
[32] 王蓬辉, 李明正, 李思. 基于数据增强的中文医疗命名实体识别[J]. 北京邮电大学学报, 2020, 43(5): 84-90.
WANG P H, LI M Z, LI S. Data augmentation for Chinese clinical named entity recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 84-90.
[33] JEAN C. Assessing agreement on classification tasks: the Kappa statistic[J]. Computational Linguistics, 1996, 22(2): 249-254.
[34] FALOTICO R, QUATTO P. Fleiss’ Kappa statistic without paradoxes[J]. Quality & Quantity, 2015, 49(2): 463-470.
[35] WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[J]. arXiv:1901.11196, 2019.
[36] LIU S, YANG H, LI J Y, et al. Chinese named entity recognition method in history and culture field based on BERT[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 1-10.
[37] 许力, 李建华. 基于BERT和BiLSTM-CRF的生物医学命名实体识别[J]. 计算机工程与科学, 2021, 43(10): 1873-1879.
XU L, LI J H. Biomedical named entity recognition based on BERT and BiLSTM-CRF[J]. Computer Engineering & Science, 2021, 43(10): 1873-1879.
[38] SUN J L, LIU Y R, CUI J, et al. Deep learning-based methods for natural hazard named entity recognition[J]. Scientific Reports, 2022, 12(1): 4598.
[39] LIPTON Z C, BERKOWITZ J, ELKAN C, et al. A critical review of recurrent neural networks for sequence learning[J]. arXiv:1506.00019, 2015.
[40] CHAI S Z, YANG Z Y, LV C S, et al. An end-to-end model based on TDNN-BiGRU for keyword spotting[C]//Proceedings of the 2019 International Conference on Asian Language Processing. Piscataway: IEEE, 2019: 402-406.
[41] LIU M Y, TU Z Y, ZHANG T, et al. LTP: a new active learning strategy for CRF-based named entity recognition[J]. Neural Processing Letters, 2022, 54(3): 2433-2454.
[42] 雷迪. 面向中医药知识图谱的命名实体识别及关系抽取[D]. 石家庄: 河北地质大学, 2021: 23-26.
LEI D. Named entity recognition and relation extraction for traditional Chinese medicine knowledge graph[D]. Shijiazhuang: Hebei GEO University, 2021: 23-26.
[43] JADON S. A survey of loss functions for semantic segmentation[C]//Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2020: 1-7.
[44] QIN Q L, ZHAO S, LIU C M. A BERT-BiGRU-CRF model for entity recognition of Chinese electronic medical records[J]. Complexity, 2021, 2021(1): 1-11.
[45] 李妮, 关焕梅, 杨飘, 等. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 山东大学学报(理学版), 2020, 55(1): 102-109.
LI N, GUAN H M, YANG P, et al. BERT-IDCNN-CRF for named entity recognition in Chinese[J]. Journal of Shandong University (Natural Science), 2020, 55(1): 102-109.
[46] GAO D, PENG L F, BAI Y J. HAZOP text named entity recognition using CNN-BilSTM-CRF model[C]//Proceedings of the 2020 Chinese Automation Congress. Piscataway: IEEE, 2020: 6159-6164.
[47] ZHANG Y, YANG J. Chinese NER using lattice LSTM[J]. arXiv:1805.02023, 2018.
[48] MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516. |