计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 363-369.DOI: 10.3778/j.issn.1002-8331.2312-0440

• 工程与应用 • 上一篇    下一篇

基于多层代价地图的启发式覆盖路径规划算法

申思康,孙波,薛瑞雷,马铜伟   

  1. 1.新疆大学 智能制造现代产业学院(机械工程学院),乌鲁木齐 830017
    2.中国科学院 海西研究院 泉州装备制造研究所,福建 晋江 362201
  • 出版日期:2025-05-01 发布日期:2025-04-30

Multi-Layer Cost Map-Based Heuristic Coverage Path Planning Algorithm

SHEN Sikang, SUN Bo, XUE Ruilei, MA Tongwei   

  1. 1.School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
    2.Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang, Fujian 362201, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 为更好地解决室外起伏地形下移动机器人的覆盖路径规划问题,提出了一种基于多层代价地图的启发式覆盖方法。分析了地形可穿越性评估的重要性,并结合机器人的运动学模型,生成了包含高度、坡度和粗糙度信息的多层二维栅格地图。以可穿越层为基本层,同时调用高度层地图信息,提出了一种基于能耗最优的多目标启发式算法,综合了距离、旋转角度和地形高度变化因素,为机器人提供了在复杂室外环境中高效且节能的路径规划。提出的方法能有效排除不可穿越区域,并通过启发式算法降低能耗。仿真与真实场景实验表明,与Z字形和螺旋形算法相比,该研究方法在路径长度、旋转角度和能耗上均具有显著优势。

关键词: 移动机器人, 覆盖路径规划, 启发式算法, 可穿越性评估

Abstract: For the problem of coverage path planning for mobile robots in undulating terrains, a heuristic coverage method based on multi-layer cost maps is proposed. The significance of terrain traversability assessment is analyzed, and a multi-layer two-dimensional grid map containing information on elevation, slope, and roughness is generated, considering the robot’s kinematics model. A new multi-objective heuristic algorithm leverages layers of traversability and height map information, synthesizing factors such as distance, rotational angle, and terrain elevation changes to provide efficient and energy-saving path planning for robots in complex outdoor settings. Through the methodology proposed in this study, the?non-traversable region can be effectively excluded, and energy consumption can be reduced through the heuristic algorithm. Simulations and real-world scenario experiments demonstrate that, compared to the Zig-zag and Spiral algorithms, the new method has significant advantages in terms of path length, rotation angles, and energy consumption.

Key words: mobile robots, coverage path planning, heuristic algorithm, traversability assessment