[1] MARINI F, WALCZAK B. Particle swarm optimization(PSO): a tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153-165.
[2] BETHSY G G, QUINTERO C M, VILORIA C N. Improved genetic algorithm approach for coordinating decision-making in technological disaster management[J]. Neural Computing and Applications, 2023, 36(9): 4503-4521.
[3] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[4] 张国, 王锐, 雷洪涛, 等. 并行智能优化算法研究进展[J]. 控制理论与应用, 2023, 40(1): 1-11.
ZHANG G, WANG R, LEI H T, et al. Research progress of parallel intelligent optimization algorithms[J]. Control Theory and Applications, 2023, 40(1): 1-11.
[5] KHISHE M, MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications, 2020, 149: 113338.
[6] ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[7] 刘海龙, 雷斌, 王菀莹, 等. 基于改进黑猩猩优化算法的仓储移动机器人路径规划[J]. 信息与控制, 2023, 52(6): 689-700.
LIU H L, LEI B, WANG W Y, et al. Path planning of warehouse mobile robot based on improved chimp optimization algorithm[J]. Information and Control, 2023, 52(6): 689-700.
[8] 王逸文, 王维莉, 刘贤超, 等. 融合两阶段分解与iJaya-ELM的短期风速预测模型[J]. 电子测量与仪器学报, 2023, 37(7): 186-195.
WANG Y W, WANG W L, LIU X C, et al. Short-term wind speed prediction model based on two-stage decomposition and iJaya-ELM[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(7): 186-195.
[9] 王逸文, 王维莉, 杨宇鸽, 等. 多策略融合改进的海洋捕食者算法及其工程应用[J/OL]. 计算机集成制造系统: 1-21[2023-12-04].http://kns.cnki.net/kcms/detail/11.5946.TP.
20230515.1111.008.html.
WANG Y W, WANG W L, YANG Y G, et al. Improved marine predators algorithm with multi-strategy fusion and its engineering applications[J/OL]. Computer Integrated Manufacturing Systems: 1-21[2023-12-04]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230515.1111.008.html.
[10] SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39: 2627-2651.
[11] 孙孝东, 刘海宁, 张勇. 一种自适应t分布和Lévy飞行机制的沙猫群优化算法[J]. 辽宁科技大学学报, 2023, 46(4): 308-314.
SUN X D, LIU H N, ZHANG Y. A sand cat swarm optimization algorithm based on adaptive t-distribution and Lévy flight mechanism[J]. Journal of University of Science and Technology Liaoning, 2023, 46(4): 308-314.
[12] LI Y M, WANG G C. Sand cat swarm optimization based on stochastic variation with elite collaboration[J]. IEEE Access, 2022, 10: 89989-90003.
[13] 回立川, 李瑶, 李欢欢, 等. 多策略改进的麻雀搜索算法 [J]. 辽宁工程技术大学学报 (自然科学版), 2023, 42(6): 722-732.
HUI L C, LI Y, LI H H, et al. Multi-strategy improved sparrow search algorithm[J]. Journal of Liaoning Technical University (Natural Science Edition), 2023, 42(6): 722-732.
[14] 王康, 司鹏, 陈莉, 等. 基于改进沙猫群算法的无人机三维航迹规划[J]. 兵工学报, 2023, 44(11): 3382-3393.
WANG K, SI P, CHEN L, et al. 3D path planning of unmanned aerial vehicle based on enhanced sand cat swarm optimization algorithm[J]. Acta Ordnance Engineering, 2023, 44(11): 3382-3393.
[15] 贾鹤鸣, 李永超, 游进华, 等. 改进沙猫群优化算法的机器人路径规划[J]. 福建工程学院学报, 2023, 21(1): 72-77.
JIA H M, LI Y C, YOU J H, et al. Robot path planning with improved sand cat swarm optimization algorithm[J]. Journal of Fujian University of Technology, 2023, 21(1): 72-77.
[16] WU D, RAO H H, WEN C S, et al. Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems[J]. Mathematics, 2022, 10(22): 4350.
[17] 蒋开正, 吕丽平. 改进沙猫群优化算法优化堆叠降噪自动编码器的发动机故障诊断[J]. 机械设计, 2023, 40(8): 56-62.
JIANG K Z, LYU L P. Engine fault diagnosis of stack noise reduction autoencoder based on improved sand cat group optimization algorithm[J]. Journal of Mechanical Design, 2023, 40(8): 56-62.
[18] 贾鹤鸣, 王琢, 文昌盛, 等. 改进沙猫群优化算法的无人机三维路径规划[J]. 宁德师范学院学报(自然科学版), 2023, 35(2): 171-179.
JIA H M, WANG ZHUO, WEN C S, et al. Uav three-dimensional path planning with improved sand cat swarm optimization algorithm[J]. Journal of Ningde Normal University(Natural Science Edition), 2023, 35(2): 171-179.
[19] 石浩帆. 基于ISCSO-RF-KPCA-ATCN的煤与瓦斯突出风险预测研究[D]. 阜新: 辽宁工程技术大学, 2023.
SHI H F. Research on risk prediction of coal and gas outburst based on ISCSO-RF-KPCA-ATCN[D]. Fuxin: Liaoning Technical University, 2023.
[20] YAO L G, YANG J, YUAN P L, et al. Multi-strategy improved sand cat swarm optimization: global optimization and feature selection[J]. Biomimetics, 2023, 8(6): 492.
[21] 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52(6): 120-130.
ZHAO X, WANG D L, PENG H, et al. Transformer fault diagnosis based on multi-strategy improved dung beetle algorithm[J]. Power System Protection and Control, 2019, 52(6): 120-130.
[22] 杜丽, 吕利叶, 孙伟, 等. 一种适用于约束空间的拉丁超立方取点策略[J]. 机械设计与制造, 2021, 366(8): 43-47.
DU L, LV L Y, SUN W, et al. A Latin hypercube point-taking strategy for constrained spaces[J]. Machinery Design & Manufacture, 2021, 366(8): 43-47.
[23] 刘苗苗, 张玉莹, 郭景峰, 等. 融合多策略改进的自适应狮群优化算法[J]. 北京邮电大学学报, 2024, 47(1): 85-93.
LIU M M, ZHANG Y Y, GUO J F, et al. Adaptive lion pride optimization algorithm with multi-strategy improvement[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(1): 85-93.
[24] 李姣, 王秋萍, 戴芳. 基于改进HHO与K-Medoids的混合聚类算法[J]. 西安理工大学学报, 2022, 38(3): 410-420.
LI J, WANG Q P, DAI F. Hybrid clustering algorithm based on improved HHO and K-Medoids[J]. Journal of Xi’an University of Technology, 2022, 38(3): 410-420.
[25] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science & Technology, 2024, 18(4): 930-946.
[26] 刘景森, 郑智远, 李煜. 一种交互演化改进鲸鱼算法及其收敛性分析[J]. 控制与决策, 2023, 38(1): 75-83.
LIU J S, ZHENG Z Y, LI Y. An improved interactive evolution whale algorithm and its convergence analysis[J]. Control and Decision, 2023, 38(1): 75-83.
[27] 陈旭东, 杨光永, 徐天奇, 等. 基于多策略融合改进粒子群算法的路径规划研究 [J]. 组合机床与自动化加工技术, 2024(2): 44-50.
CHEN X D, YANG G Y, XU T Q, et al. Path planning based on multi-strategy fusion improved particle swarm optimization[J]. Modular Machine Tool & Automatic Machining Technology, 2024(2): 44-50.
[28] 王冠中, 王士军, 冉川东. 基于改进差分进化算法的自由曲面测量路径优化[J]. 制造技术与机床, 2024(3): 51-56.
WANG G Z, WANG S J, RAN C D. Freeform surface measurement path optimization based on improved differential evolution algorithm[J]. Manufacturing Technology & Machine Tool, 2024(3): 51-56.
[29] XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[30] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[31] TROJOVSKY P, DEHGHANI M. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems[J]. Biomimetics, 2023, 8(2): 149.
[32] 赵世杰, 张红易, 马世林. 领导者引导与支配解进化的多目标矮猫鼬算法[J]. 计算机科学与探索, 2024, 18(2): 403-424.
ZHAO S J, ZHANG H Y, MA S L. Multi-objective dwarf mongoose algorithm for leader guidance and dominance solution evolution[J]. Journal of Computer Science and Exploration, 2024, 18(2): 403-424.
[33] 冯志亮, 肖涵麒, 任文凤, 等. 基于主成分分析的海鸥优化支持向量机变压器故障诊断[J]. 中国测试, 2023, 49(2): 99-105.
FENG Z L, XIAO H Q, REN W F, et al. Principal component analysis based seagull optimization support vector machine transformer fault diagnosis[J]. China Test, 2023, 49(2): 99-105. |