[1] 朱大奇, 颜明重. 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25(7): 961-967.
ZHU D Q, YAN M Z. Overview of mobile robot path planning technology[J]. Control and Decision, 2010, 25(7): 961-967.
[2] 王旭, 朱其新, 朱永红. 面向二维移动机器人的路径规划算法综述[J]. 计算机工程与应用, 2023, 59(20): 51-66.
WANG X, ZHU Q X, ZHU Y H. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications, 2023, 59(20): 51-66.
[3] SUN Y, FANG M, SU Y. AGV path planning based on improved Dijkstra algorithm[J]. Journal of Physics: Conference Series, 2021, 1746(1): 12-52.
[4] SHANG E K, DAI B, NIE Y M, et al. An improved A-Star based path planning algorithm for autonomous land vehicles[J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 1-13.
[5] 邱硕涵, 谭章禄, 蔡晓梅. 基于D_Star算法的巡检机器人路径规划优化研究[J]. 中国矿业大学学报, 2021, 50(5): 1011-1018.
QIU S H, TAN Z L, CAI X M. Research on path planning optimization of patrol robot based on D_Star algorithm[J]. Journal of China University of Mining and Technology, 2021, 50(5): 1011-1018.
[6] 江明, 王飞, 葛愿, 等. 基于改进蚁群算法的移动机器人路径规划研究[J]. 仪器仪表学报, 2019, 40(2): 113-121.
JIANG M, WANG F, GE Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Journal of Instrumentation, 2019, 40(2): 113-121
[7] 马小陆, 梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J]. 机械工程学报, 2021, 57(1): 19-27.
MA X L, MEI H. Mobile robot global path planning based on improved potential field ant colony algorithm[J]. Journal of Mechanical Engineering, 2021, 57(1): 19-27.
[8] 刘洋, 马建伟, 臧绍飞, 等. 基于融合Bezier优化遗传算法的路径规划[J]. 控制工程, 2021, 28(2): 284-292.
LIU Y, MA J W, ZANG S F, et al. Path planning based on fusion Bezier optimized genetic algorithm[J]. Control Engineering, 2021, 28(2): 284-292.
[9] LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning[R]. Iowa: Iowa State University, 1998.
[10] 宁宇铭, 李团结, 姚聪, 等. 基于快速扩展随机树——贪婪边界搜索的多机器人协同空间探索方法[J]. 机器人, 2022, 44(6): 708-719.
NING Y M, LI T J, YAO C, et al. Multi robot collaborative space exploration method based on fast expanding random tree greedy boundary search[J]. Robot, 2022, 44(6): 708-719.
[11] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 2997-3004.
[12] WANG X Z. The comparison of three algorithms in shortest path issue[J]. Journal of Physics: Conference Series, 2018, 1087(2): 1-7.
[13] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. arXiv:1105.1186, 2011.
[14] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-connect: an asymptotically optimal single-query path planning method[J]. IEEE Access, 2020, 8: 19842-19852.
[15] KLEMM S, OBERL?NDER J, HERMANN A, et al. RRT?-connect: faster, asymptotically optimal motion planning[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2015: 1670-1677.
[16] WANG X, MA X, LI X, et al. Target-biased informed trees: sampling-based method for optimal motion planning in complex environments[J]. Journal of Computational Design and Engineering, 2022, 9(2): 755-771.
[17] 涂睿, 王文格, 卢成阳. 移动机器人实时采样路径重规划[J]. 计算机工程与应用, 2021, 57(20): 157-163.
TU R, WANG W G, LU C Y. Real-time sampling path replanning of mobile robot[J]. Computer Engineering and Applications, 2021, 57(20): 157-163.
[18] 段书用, 王启帆, 韩旭, 等. 具有确保安全距离的A* 路径优化方法[J]. 机械工程学报, 2020, 56(18): 205-215.
DUAN S Y, WANG Q F, HAN X, et al. A * path optimization method with safe distance[J]. Journal of Mechanical Engineering, 2020, 56 (18): 205-215.
[19] 刘翰培, 王东署, 汪宇轩, 等. 移动机器人路径规划的模糊人工势场法研究[J]. 控制工程, 2022, 29(1): 33-38.
LIU H P, WANG D S, WANG Y X, et al. Research of path planning for mobile robots based on fuzzy artificial potential field method[J]. Control Engineering of China, 2022, 29(1): 33-38.
[20] MIN C K, JAE B S. Informed-RRT* with improved converging rate by adopting wrapping procedure[J]. Intelligent Service Robotics, 2018, 11(1): 53-60.
[21] 李二超, 王玉华. 改进人工势场法的移动机器人避障轨迹研究[J]. 计算机工程与应用, 2022, 58(6): 296-304.
LI E C, WANG Y H. Research on obstacle avoidance trajectory of mobile robot based on improved artificial potential field[J]. Computer Engineering and Applications, 2022, 58(6): 296-304. |