计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 283-293.DOI: 10.3778/j.issn.1002-8331.2405-0216

• 工程与应用 • 上一篇    下一篇

改进Informed RRT*算法移动机器人路径规划

鲁宇明,周羽逵,郭鑫,池吕庭,戴骏   

  1. 1.南昌航空大学 航空制造工程学院,南昌 330036
    2.北京安期生技术有限公司,北京 101300
  • 出版日期:2025-04-15 发布日期:2025-04-15

Mobile Robot Path Planning Based on Improved Informed RRT* Algorithm

LU Yuming, ZHOU Yukui, GUO Xin, CHI Lyuting, DAI Jun   

  1. 1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330036, China
    2.Beijing Anqisheng Technology Co., Ltd., Beijing 101300, China
  • Online:2025-04-15 Published:2025-04-15

摘要: Informed RRT*算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT*路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT*算法和基于目标偏置的Informed RRT*算法(Goal-bias-Informed RRT*)以及改进后的Informed RRT*算法进行比较实验,实验结果验证了改进后Informed RRT*算法的有效性和优越性及稳定性。该算法较Informed RRT*算法和Goal-bias-Informed RRT*效率更高、更容易得到初始解、更安全、更平滑、更稳定。

关键词: 移动机器人, 路径规划, 随机采样, Informed RRT*算法, 目标偏置, 约束采样空间

Abstract: The Informed RRT* algorithm is insensitive to the initial solution, and the planned path is too close to the obstacles, which leads to the unsmooth path. This paper presents an improved Informed RRT* path planning algorithm, which improves the constrained sampling space and guidance strategy. Firstly, in the initial sampling stage, the sampling area is limited to a circular area to speed up the convergence of the initial solution. Secondly, the idea of gravitational field and repulsive field in artificial potential field is introduced in the algorithm planning process, so that the robot can keep a safe distance from obstacles and move towards the target position. Compared with the Informed RRT* algorithm and the Informed RRT*algorithm based on target offset (Goal-bias-Informed RRT*), the experimental results verify the effectiveness, superiority and stability of the improved Informed RRT* algorithm. Compared with the Informed RRT* algorithm and Goal-bias-Informed RRT*, this algorithm is more efficient, easier to get the initial solution, safer, smoother and more stable.

Key words: mobile robot, path planning, random sampling, Informed RRT* algorithm, target offset, constrained sampling space