计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 274-282.DOI: 10.3778/j.issn.1002-8331.2402-0066

• 网络、通信与安全 • 上一篇    下一篇

融合零知识证明的去中心联邦学习可信聚合方案

张首勋,王玲玲,耿克,陆忠锴   

  1. 青岛科技大学 信息科学技术学院,山东 青岛 266042
  • 出版日期:2025-04-15 发布日期:2025-04-15

Trustful Aggregation Scheme for Decentralized Federated Learning Based on Zero Knowledge Proof

ZHANG Shouxun, WANG Lingling, GENG Ke, LU Zhongkai   

  1. School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 去中心联邦学习可以有效解决传统联邦学习存在的通信效率低、不可信聚合服务器阻碍模型正确聚合的问题。然而,在去中心架构下,客户端成为本地训练和模型聚合过程的唯一实体,不可信客户端将直接影响联邦学习过程的完整性和模型聚合结果的正确性。基于此,利用简洁非交互零知识证明技术提出一种针对环形架构去中心联邦学习的可信聚合方案,通过对不同客户端生成的可信证据进行组合,实现客户端本地训练和模型聚合过程的正确可验证。此外,使用矩阵承诺技术确保中间参数的真实性。实验结果表明数据样本维度小于64×64时方案是可行的,且证明所需时间开销和存储开销与基准方案相比有所降低。

关键词: 隐私安全, 联邦学习, 非交互零知识证明

Abstract: Decentralized federated learning can solve the problems in typical federated learning techniques effectively, such as low communication efficiency and untrusted aggregation servers, which can prevent model aggregation from being executed correctly. However, clients become the entities of local training and model aggregation in decentralized architecture. Untrusted clients will affect the completeness of federated learning process and the correctness of aggregation result directly. This paper proposes a trustworthy aggregation scheme for the annular decentralized federated learning system based on zk-SNARK technique. The paper demonstrates the correctness and verifiability of local training and model aggregation by combining trusted proofs of different clients. Furthermore, this paper uses matrix commitment to ensure the genuineness of intermediate parameters. Experimental results show the feasibility of this scheme when the dimension of data sample is lower than 64×64. The time and storage overheads are reduced compared with the baseline scheme.

Key words: privacy security, federated learning, zero knowledge succinct non-interactive arguments of knowledge (zk-SNARK)