计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (3): 61-77.DOI: 10.3778/j.issn.1002-8331.2303-0332
段昕汝,陈桂茸,陈爱网,陈晨,姬伟峰
出版日期:
2024-02-01
发布日期:
2024-02-01
DUAN Xinru, CHEN Guirong, CHEN Aiwang, CHEN Chen, JI Weifeng
Online:
2024-02-01
Published:
2024-02-01
摘要: 联邦学习作为一种新兴的机器学习技术,允许多方在不共享原始数据的前提下通过参数交互完成协同训练,生成全局模型,为打破数据孤岛、整合数据资源提供了新范式,成为人工智能领域的一大研究热点。但联邦学习依然面临诸多安全风险。对联邦学习领域的国内外最新研究成果进行系统分析和分类,以联邦学习模型训练过程为线索,分析每个过程中系统可能存在的安全威胁,研究不同安全威胁的机理和特点,并按照威胁程度对其进行分类,在此基础上,研究当前先进的防御策略;最后,探讨了联邦学习面临的主要挑战和未来发展方向,旨在推动联邦学习应用安全落地和推广。
段昕汝, 陈桂茸, 陈爱网, 陈晨, 姬伟峰. 联邦学习中的信息安全问题研究综述[J]. 计算机工程与应用, 2024, 60(3): 61-77.
DUAN Xinru, CHEN Guirong, CHEN Aiwang, CHEN Chen, JI Weifeng. Review of Research on Information Security in Federated Learning[J]. Computer Engineering and Applications, 2024, 60(3): 61-77.
[1] MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[J]. arXiv:1602.05629, 2016. [2] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, Apr 20-22, 2017: 1273-1282. [3] 杨强. AI与数据隐私保护: 联邦学习的破解之道[J].信息安全研究, 2019, 5(11): 961-965. YANG Q. AI and data privacy protection: the way to federated learning[J]. Journal of Information Security Research, 2019, 5(11): 961-965. [4] WU X, ZHENG H, DOU Z, et al. A novel privacy-preserving federated genome-wide association study framework and its application in identifying potential risk variants in ankylosing spondylitis[J]. Briefings in Bioinformatics, 2021, 22(3): 90. [5] CHE S, KONG Z, PENG H, et al. Federated multi-view learning for private medical data integration and analysis[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(4): 1-23. [6] 王生生, 陈境宇, 卢奕南.基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J].吉林大学学报(工学版), 2021, 51(6): 2164-2173. WANG S S, CHEN J Y, LU Y N. COVID-19 chest CT image segmentation based on federated learning and blockchain[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173. [7] HARD A, RAO K, MATHEWS R, et al. Federated learning for mobile keyboard prediction[J]. arXiv:1811.03604, 2018. [8] 王蓉, 马春光, 武朋.基于联邦学习和卷积神经网络的入侵检测方法[J].信息网络安全, 2020(4): 47-54. WANG R, MA C G, WU P. An intrusion detection method based on federated learning and convolutional neural network[J]. Netinfo Security, 2020(4): 47-54. [9] 任涛, 金若辰, 罗咏梅.融合区块链与联邦学习的网络入侵检测算法[J].信息网络安全, 2021(7): 27-34. REN T, JIN R C, LUO Y M. Network intrusion detection algorithm integrating blockchain and federated learning[J]. Netinfo Security, 2021(7): 27-34. [10] 白宏鹏, 邓东旭, 许光全, 等.基于联邦学习的入侵检测机制研究[J].信息网络安全, 2022(1): 46-54. BAI H P, DENG D X, XU G Q, et al. Research on intrusion detection mechanism based on federated learning[J]. Netinfo Security, 2022(1): 46-54. [11] 杨强, 童咏昕, 王晏晟, 等.群体智能中的联邦学习算法综述[J]. 智能科学与技术学报, 2022, 4(1): 29-44. YANG Q, TONG Y X, WANG Y S, et al. A survey on federated learning in crowd intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(1): 29-44. [12] 杨强.联邦学习: 人工智能的最后一公里[J].智能系统学报, 2020, 15(1): 183-186. YANG Q. Federated learning: the last on kilometer of artificial intelligence[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1): 183-186. [13] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19. [14] LI X, HUANG K, YANG W, et al. On the convergence of fedavg on non-IID data[J]. arXiv:1907.02189, 2019. [15] KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for on-device federated learning[J]. arXiv:1910.06378, 2019. [16] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429-450. [17] T DINH C, TRAN N, NGUYEN J. Personalized federated learning with moreau envelopes[C]//Advances in Neural Information Processing Systems, 2020: 21394-21405. [18] BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[J]. Proceedings of Machine Learning and Systems, 2019, 1: 374-388. [19] BONAWITZ K, IVANOV V, KREUTER, B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, Oct 30-Nov 3, 2017: 1175-1191. [20] ZHANG X, GU H, FAN L, et al. No free lunch theorem for security and utility in federated learning[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 14(1): 1-35. [21] BHOWMICK A, DUCHI J, FREUDIGER J, et al. Protection against reconstruction and its applications in private federated learning[J]. arXiv:1812.00984, 2018. [22] BOUACIDA N, MOHAPATRA P. Vulnerabilities in federated learning[J]. IEEE Access, 2021, 9: 63229-63249. [23] ABDULRAHMAN S, TOUT H, OULD-SLIMANE H, et al. A survey on federated learning: the journey from centralized to distributed on-site learning and beyond[J]. IEEE Internet of Things Journal, 2020, 8(7): 5476-5497. [24] WANG Z, SONG M, ZHANG Z, et al. Beyond inferring class representatives: user-level privacy leakage from federated learning[C]//Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, Apr 29-May 2, 2019: 2512-2520. [25] MAMMEN P M. Federated learning: opportunities and challenges[J]. arXiv:2101.05428, 2021. [26] MELIS L, SONG C, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]//Proceedings of the 2019 IEEE Symposium on Security and privacy (SP), San Francisco, May 19-23, 2019: 691-706. [27] ZHU L, LIU Z, HAN S. Deep leakage from gradients[C]//Advances in Neural Information Processing Systems, 2019. [28] NIKNAM S, DHILLON H S, REED J H. Federated learning for wireless communications: Motivation, opportunities, and challenges[J]. IEEE Communications Magazine, 2020, 58(6): 46-51. [29] MA C, LI J, DING M, et al. On safeguarding privacy and security in the framework of federated learning[J]. IEEE Network, 2020, 34(4): 242-248. [30] CARLINI N, LIU C, KOS J, et al. The secret sharer: measuring unintended neural network memorization & extracting secrets[J]. arXiv:1802.08232, 2018. [31] GEIPING J, BAUERMEISTER H, DR?GE H, et al. Inverting gradients-how easy is it to break privacy in federated learning? [C]//Advances in Neural Information Processing Systems, 2020: 16937-16947. [32] JAGIELSKI M, OPREA A, BIGGIO B, et al. Manipulating machine learning: poisoning attacks and countermeasures for regression learning[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, May 21-23, 2018: 19-35. [33] SHAFAHI A, HUANG W R, NAJIBI M, et al. Poison frogs! targeted clean-label poisoning attacks on neural networks[C]//Advances in Neural Information Processing Systems, 2018. [34] 张义莲, 颜晟, 朱旻捷, 等.机器学习系统毒化攻击综述[J]. 通信技术, 2020, 53(3): 535-542. ZHANG Y L, YAN C, ZHU M J, et al.Overview on poisoning attacks against machine learning system[J]. Communications Technology, 2020, 53(3): 535-542. [35] SUN G, CONG Y, DONG J, et al. Data poisoning attacks on federated machine learning[J]. IEEE Internet of Things Journal, 2021, 9(13): 11365-11375. [36] TOLPEGIN V, TRUEX S, GURSOY M E, et al. Data poisoning attacks against federated learning systems[C]//Proceedings of the 25th European Symposium on Research in Computer Security, Guildford, Sep 14-18, 2020: 480-501. [37] DOKU R, RAWAT D B. Mitigating data poisoning attacks on a federated learning-edge computing network[C]//Proceedings of the 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, Jan 9-12, 2021: 1-6. [38] BHAGOJI A N, CHAKRABORTY S, MITTAL P, et al. Analyzing federated learning through an adversarial lens[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 634-643. [39] FANG M, CAO X, JIA J, et al. Local model poisoning attacks to {Byzantine-Robust} federated learning[C]//Proceedings of the 29th USENIX Security Symposium, Boston, Aug 12-14, 2020: 1605-1622. [40] SUN Z, KAIROUZ P, SURESH A T, et al. Can you really backdoor federated learning?[J]. arXiv:1911.07963, 2019. [41] BAGDASARYAN E, VEIT A, HUA Y, et al. How to backdoor federated learning[C]//Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Aug 26-28, 2020: 2938-2948. [42] XIE C, HUANG K, CHEN P Y, et al. DBA: distributed backdoor attacks against federated learning[C]//Proceedings of the International Conference on Learning Representations, Apr 26-May 1, 2020. [43] WANG H, SREENIVASAN K, RAJPUT S, et al. Attack of the tails: yes, you really can backdoor federated learning[C]//Advances in Neural Information Processing Systems, 2020: 16070-16084. [44] BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: byzantine tolerant gradient descent[C]//Advances in Neural Information Processing Systems, 2017. [45] LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem[J] ACM Transactions on Programming Languages and Systems, 2019, 4(3) 382-401. [46] GOUISSEM A, ABUALSAUD K, YAACOUB E, et al. Federated learning stability under Byzantine attacks[C]//Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Austin, Apr 10-13, 2022. Piscataway: IEEE, 2022: 572-577. [47] GHOSH A, HONG J, YIN D, et al. Robust federated learning in a heterogeneous environment[J]. arXiv:1906.06629, 2019. [48] SHI J, WAN W, HU S, et al. Challenges and approaches for mitigating byzantine attacks in federated learning[C]//Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, Dec 9-11, 2022. Piscataway: IEEE, 2022: 139-146. [49] ZHAO P, CAO Z, JIANG J, et al. Practical private aggregation in federated learning against inference attack[J]. IEEE Internet of Things Journal, 2022, 10(1): 318-329. [50] LAM M, WEI G Y, BROOKS D, et al. Gradient disaggregation: breaking privacy in federated learning by reconstructing the user participant matrix[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 5959-5968. [51] YIN H, MALLYA A, VAHDAT A, et al. See through gradients: Image batch recovery via gradinversion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 19-25, 2021. Piscataway: IEEE, 2021: 16337-16346. [52] JIN X, CHEN P Y, HSU C Y, et al. CAFE: catastrophic data leakage in vertical federated learning[C]//Advances in Neural Information Processing Systems, 2021: 994-1006. [53] LEBRUN T, BOUTET A, AALMOES J, et al. MixNN: protection of federated learning against inference attacks by mixing neural network layers[C]//Proceedings of the 23rd ACM/IFIP International Middleware Conference, Quebec Nov 7-11, 2022. New York: ACM, 2022: 135-147. [54] LYU L, CHEN C. A novel attribute reconstruction attack in federated learning[J]. arXiv:2108.06910, 2021. [55] HU H, SALCIC Z, SUN L, et al. Source inference attacks in federated learning[[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM), Auckland, Dec 7-10, 2021. Piscataway: IEEE, 2021: 1102-1107. [56] GU Y, BAI Y, XU S. CS-MIA: membership inference attack based on prediction confidence series in federated learning[J]. Journal of Information Security and Applications, 2022, 67: 103201. [57] VO H, TANG M, ZHENG X, et al. BI-GAN: batch inversion membership inference attack on federated learning[C]//Proceedings of the 17th ACM Workshop on Mobility in the Evolving Internet Architecture, Sydney, Oct 21, 2022. New York: ACM, 2022: 31-36. [58] LUO X, WU Y, XIAO X, et al. Feature inference attack on model predictions in vertical federated learning[C]//Proceedings of the IEEE 37th International Conference on Data Engineering (ICDE), Chania, Apr 19-22, 2021. Piscataway: IEEE, 2021: 181-192. [59] 李少波, 杨磊, 李传江, 等.联邦学习概述: 技术、应用及未来[J].计算机集成制造系统, 2022, 28(7): 2119-2138. LI S B, YANG L, LI C J, et al. Overview of federated learning: technology, applications and future[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2119-2138. [60] BELL J H, BONAWITZ K A, GASCóN A, et al. Secure single-server aggregation with (poly) logarithmic overhead[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Nov 9-13, 2020. New York: ACM, 2020: 1253-1269. [61] ANDREINA S, MARSON G A, M?LLERING H, et al. Baffle: backdoor detection via feedback-based federated learning[C]//Proceedings of the IEEE 41st International Conference on Distributed Computing Systems (ICDCS), DC, Jul 7-10, 2021. Piscataway: IEEE, 2021: 852-863. [62] XIE C, CHEN M, CHEN P Y, et al. CRFL: certifiably robust federated learning against backdoor attacks[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 11372-11382. [63] SUN J, LI A, DIVALENTIN L, et al. Fl-wbc: enhancing robustness against model poisoning attacks in federated learning from a client perspective[C]//Advances in Neural Information Processing Systems, 2021: 12613-12624. [64] LYCKLAMA H, BURKHALTER L, VIAND A, et al. RoFL: robustness of secure federated learning[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, May 22-26, 2023: 453-476. [65] JAHANI-NEZHAD T, MADDAH-ALI M A, LI S, et al. SwiftAgg+: achieving asymptotically optimal communication loads in secure aggregation for federated learning[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(4): 977-989. [66] RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169-180. [67] ZHANG S, LI Z, CHEN Q, et al. Dubhe: towards data unbiasedness with homomorphic encryption in federated learning client selection[C]//Proceedings of the 50th International Conference on Parallel Processing, Lemont, Aug 9-12, 2021. New York: ACM, 2021: 1-10. [68] PARK J, LIM H. Privacy-preserving federated learning using homomorphic encryption[J]. Applied Sciences, 2022, 12(2): 734. [69] MA J, NAAS S A, SIGG S, et al. Privacy‐preserving federated learning based on multi‐key homomorphic encryption[J]. International Journal of Intelligent Systems, 2022, 37(9): 5880-5901. [70] LIN Y, HAN S, MAO H, et al. Deep gradient compression: reducing the communication bandwidth for distributed training[J]. arXiv:1712.01887, 2017. [71] HU R, GONG Y, GUO Y. Federated Learning with sparsification-amplified privacy and adaptive optimization[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021: 1463-1469. [72] WAINAKH A, VENTOLA F, Mü?IG T, et al. User-level label leakage from gradients in federated learning[J]. Proceedings on Privacy Enhancing Technologies, 2022(2): 227-244. [73] PILLUTLA K, KAKADE S M, HARCHAOUI Z. Robust aggregation for federated learning[J]. IEEE Transactions on Signal Processing, 2022, 70: 1142-1154. [74] ASOODEH S, CHEN W N, CALMON F P, et al. Differentially private federated learning: An information-theoretic perspective[C]//Proceedings of the IEEE International Symposium on Information Theory (ISIT), Jul 12-20, 2021. Piscataway: IEEE, 2021: 344-349. [75] LYU L J, YU H, MA X J, et al. Privacy and robustness in federated learning: attacks and defenses[J]. arXiv:2012. 06337, 2020. [76] CANONNE C L, KAMATH G, STEINKE T. The discrete gaussian for differential privacy[C]//Advances in Neural Information Processing Systems, 2020: 15676-15688. [77] KAIROUZ P, LIU Z, STEINKE T. The distributed discrete Gaussian mechanism for federated learning with secure aggregation[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 5201-5212. [78] CHOUDHURY O, GKOULALAS-DIVANIS A, SALONIDIS T, et al. Differential privacy-enabled federated learning for sensitive health data[J]. arXiv:1910.02578, 2019. [79] SHI Y, LIU Y, WEI K, et al. Make landscape flatter in differentially private federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 18-22, 2023. Piscataway: IEEE, 2023: 24552-24562. [80] LANG N, SOFER E, SHAKED T, et al. Joint privacy enhancement and quantization in federated learning[J]. IEEE Transactions on Signal Processing, 2023, 71: 295-310. [81] SUI D, CHEN Y, ZHAO J, et al. Feded: federated learning via ensemble distillation for medical relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) , Nov 16-20, 2020: 2118-2128. [82] ZHU Z, HONG J, ZHOU J. Data-free knowledge distillation for heterogeneous federated learning[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 12878-12889. [83] ZHANG Z, WANG S, HONG Y, et al. Distributed dynamic map fusion via federated learning for intelligent networked vehicles[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 953-959. [84] KANG J, XIONG Z, JIANG C, et al. Scalable and communication?efficient decentralized federated edge learning with multi-blockchain framework[C]//Proceedings of the Second International Conference on Blockchain and Trustworthy System (BlockSys 2020), Dali, Aug 6-7, 2020. Berlin: Springer, 2020: 152-165. [85] CHANG Y, FANG C, SUN W. A blockchain-based federated learning method for smart healthcare[C]//Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Jun 25, 2020. [86] CHEN J, XUE J, WANG Y, et al. Privacy-preserving and traceable federated learning for data sharing in industrial IoT applications[J]. Expert Systems with Applications, 2023, 213: 119036. [87] YUROCHKIN M, AGARWAL M, GHOSH S, et al. Bayesian nonparametric federated learning of neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 7252-7261. [88] GUHA N, TALWALKAR A, SMITH V. One-shot federated learning[J]. arXiv:1902.11175, 2019. [89] ZHOU Y, PU G, MA X, et al. Distilled one-shot federated learning[J]. arXiv:2009.07999, 2020. [90] LI Q, HE B, SONG D. Practical one-shot federated learning for cross-silo setting[J]. arXiv:2010.01017, 2020. [91] KASTURI A, ELLORE A R, HOTA C. Fusion learning: a one shot federated learning[C]//Proceedings of the 20th International Conference on Computational Science, Netherlands, Jun 3-5, 2020. Berlin: Springer, 2020: 424-436. [92] XIONG Y, WANG R, CHENG M, et al. Feddm: iterative distribution matching for communication-efficient federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 18-22, 2023. Piscataway: IEEE, 2023: 16323-16332. [93] LIU Y, KUMAR N, XIONG Z, et al. Communication-efficient federated learning for anomaly detection in industrial internet of things[C]//Proceedings of the 2020 IEEE Global Communications Conference (GLOBECOM 2020), Taiwan, China, Dec 7-11, 2020. Piscataway: IEEE, 2020: 1-6. [94] LEE H, KIM J, AHN S, et al. Digestive neural networks: a novel defense strategy against inference attacks in federated learning[J]. Computers & Security, 2021, 109: 102378. [95] 林伟伟, 石方, 曾岚, 等.联邦学习开源框架综述[J].计算机研究与发展, 2023(7): 1551-1580. LIN W W, SHI F, ZENG L, et al. Survey of federated learning open-source frameworks[J]. Journal of Computer Research and Development, 2023(7): 1551-1580. |
[1] | 谭荣杰, 洪智勇, 余文华, 曾志强. 非独立同分布数据下的去中心化联邦学习策略[J]. 计算机工程与应用, 2023, 59(1): 269-277. |
[2] | 康鹏, 杨文忠, 马红桥. TLS协议恶意加密流量识别研究综述[J]. 计算机工程与应用, 2022, 58(12): 1-11. |
[3] | 王昊天, 郑栋毅, 刘芳, 肖侬. 面向多元时序数据的个性化联邦异常检测方法[J]. 计算机工程与应用, 2022, 58(11): 60-65. |
[4] | 杨舒,苏放. 基于微服务的分布式数据安全整合应用系统[J]. 计算机工程与应用, 2021, 57(18): 238-247. |
[5] | 周亮,应欢,戴波,邱意民. 安全高效的生物识别外包计算方案研究[J]. 计算机工程与应用, 2020, 56(1): 127-135. |
[6] | 黄 洪1,胡 勇2. 基于信息流的数据安全风险识别模型研究[J]. 计算机工程与应用, 2015, 51(4): 1-6. |
[7] | 江凌波,马 超,王加玉. DFCM:以数据为中心的安全控制机制[J]. 计算机工程与应用, 2015, 51(12): 55-62. |
[8] | 王正飞1,2,汪 卫3,施伯乐3. 外包数据库中数据加密的设计和实现[J]. 计算机工程与应用, 2010, 46(28): 141-145. |
[9] | 见晓春1,吴振强1,2,王小明1,霍成义1,张 婕1. 移动互联网络动态匿名算法设计与分析[J]. 计算机工程与应用, 2009, 45(18): 115-119. |
[10] | 李军怀1,高 苗1,陈晓明1,刘红英1,楼文晓2. 时空特性约束下的数据挖掘隐私保护方法[J]. 计算机工程与应用, 2008, 44(9): 139-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||