计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (3): 44-60.DOI: 10.3778/j.issn.1002-8331.2303-0224
田苗苗,支力佳,张少敏,晁代福
出版日期:
2024-02-01
发布日期:
2024-02-01
TIAN Miaomiao, ZHI Lijia, ZHANG Shaomin, CHAO Daifu
Online:
2024-02-01
Published:
2024-02-01
摘要: 图像超分辨率(SR)是计算机视觉领域提高图像分辨率的重要处理方法之一,在医学图像领域有重要的研究意义和应用价值。高质量和高分辨率的医学CT影像在当前的临床过程中非常重要。近年来,基于深度学习的医学CT影像超分辨率重建技术取得了显著的进展,对该领域内的代表性方法进行了梳理,系统回顾了医学CT影像超分辨率重建技术的发展。介绍了SR基本理论,给出常用的评价指标;重点阐述基于深度学习的医学CT影像超分辨率重建方向的创新与进展,对各个方法的主要特点和性能进行了综合比较分析。最后,讨论了医学CT影像超分辨率重建方向上存在的困难和挑战,并对未来的发展趋势进行了总结与展望,希望能为相关研究提供参考。
田苗苗, 支力佳, 张少敏, 晁代福. 医学CT影像超分辨率深度学习方法综述[J]. 计算机工程与应用, 2024, 60(3): 44-60.
TIAN Miaomiao, ZHI Lijia, ZHANG Shaomin, CHAO Daifu. Review of Deep Learning Methods Applied to Medical CT Super-Resolution[J]. Computer Engineering and Applications, 2024, 60(3): 44-60.
[1] YEH J J, CHEN S C C, TENG W B, et al. Identifying the most infectious lesions in pulmonary tuberculosis by high-resolution multi-detector computed tomography[J]. European Radiology, 2010, 20: 2135-2145. [2] AKIRA M, INOUE Y, ARAI T, et al. Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis[J]. AJR American Journal of Roentgenology, 2016, 207(3): 544-551. [3] LEE H Y, LEE K S, JEONG Y J, et al. High-resolution CT findings in fibrotic idiopathic interstitial pneumonias with little honeycombing: serial changes and prognostic implications[J]. AJR American Journal of Roentgenology, 2012, 199(5): 982-989. [4] 刘东权.超高分辨与常规螺旋 CT 扫描对肺结节良恶性鉴别的临床观察[J]. 浙江创伤外科, 2020(6):1208-1210. LIU D Q. Clinical observation of diagnosis of benign and malignant pulmonary nodules by ultra high resolution and conventional spiral CT[J]. Zhejiang Journal of Traumatic Surgery, 2020(6):1208-1210. [5] GERCHBERG R W. Super-resolution through error energy reduction[J]. Optica Acta: International Journal of Optics, 1974, 21(9): 709-720. [6] HOU H, JIN Q, ZHANG G, et al. CT image quality enhancement via a dual-channel neural network with jointing denoising and super-resolution[J]. Neurocomputing, 2022, 492: 343-352. [7] BAKER S, KANADE T. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183. [8] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. [9] CHAUDHARI A S, FANG Z, KOGAN F, et al. Super‐resolution musculoskeletal MRI using deep learning[J]. Magnetic Resonance in Medicine, 2018, 80(5): 2139-2154. [10] MAHAPATRA D, BOZORGTABAR B, GARNAVI R. Image super-resolution using progressive generative adversarial networks for medical image analysis[J]. Computerized Medical Imaging and Graphics, 2019, 71: 30-39. [11] BASHIR S M A, WANG Y. Deep learning for the assisted diagnosis of movement disorders, including isolated dystonia[J]. Frontiers in Neurology, 2021, 12: 638266. [12] UMEHARA K, OTA J, ISHIDA T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT[J]. Journal of Digital Imaging, 2018, 31: 441-450. [13] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654. [14] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. [15] HONG S H, WANG L, TRUONG T K. An improved approach to the cubic-spline interpolation[C]//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), 2018: 1468-1472. [16] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016: 391-407. [17] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 624-632. [18] WANG Y, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 864-873. [19] SONG Z, ZHAO X, HUI Y, et al. Progressive back-projection network for COVID-CT super-resolution[J]. Computer Methods and Programs in Biomedicine, 2021, 208: 106193. [20] LI Z, YANG J, LIU Z, et al. Feedback network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3867-3876. [21] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2794-2802. [22] SAJJADI M S M, SCHOLKOPF B, HIRSCH M. Enhancenet: single image super-resolution through automated texture synthesis[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4491-4500. [23] STREIJL R C, WINKLER S, HANDS D S. Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives[J]. Multimedia Systems, 2016, 22(2): 213-227. [24] LUGMAYR A, DANELLJAN M, TIMOFTE R. Ntire 2020 challenge on real-world image super-resolution: methods and results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 494-495. [25] ZHOU W, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [26] PAMBRUN J F, NOUMEIR R. Limitations of the SSIM quality metric in the context of diagnostic imaging[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP), 2015: 2960-2963. [27] SHEIKH H R, BOVIK A C, VECIANA G D. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. [28] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. [29] GEORGESCU M-I, IONESCU R T, VERGA N. Convolutional neural networks with intermediate loss for 3D super-resolution of CT and MRI scans[J]. IEEE Access, 2020, 8: 49112-49124. [30] AMARANAGESWARAO G, DEIVALAKSHMI S, KO S B. Wavelet based medical image super resolution using cross connected residual-in-dense grouped convolutional neural network[J]. Journal of Visual Communication and Image Representation, 2020, 70:102819. [31] GU Y, ZENG Z, CHEN H, et al. MedSRGAN: medical images super?resolution using generative adversarial networks[J]. Multimedia Tools and Applications, 2020, 79(29): 21815-21840. [32] KUDO A, KITAMURA Y, LI Y, et al. Virtual thin slice: 3D conditional GAN-based super-resolution for CT slice interval[C]//Proceedings of the International Workshop on Machine Learning for Medical Image Reconstruction, Shenzhen, China, October 17, 2019: 91-100. [33] ZHANG J, GONG L R, YU K, et al. 3D reconstruction for super-resolution CT images in the Internet of health things using deep learning[J]. IEEE Access, 2020, 8: 121513-121525. [34] JI X, CAO Y, TAI Y, et al. Real-world super-resolution via kernel estimation and noise injection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 466-467. [35] YOU C, LI G, ZHANG Y, et al. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE)[J]. IEEE Transactions on Medical Imaging, 2019, 39(1): 188-203. [36] JIANG X, LIU M, ZHAO F, et al. A novel super-resolution CT image reconstruction via semi?supervised generative adversarial network[J]. Neural Computing and Applications, 2020, 32(18): 14563-14578. [37] JIANG X, XU Y, WEI P, et al. CT image super resolution based on improved SRGAN[C]//Proceedings of the 5th International Conference on Computer and Communication Systems (ICCCS), 2020: 363-367. [38] ZHANG X, FENG C, WANG A, et al. CT super-resolution using multiple dense residual block based GAN[J]. Signal, Image and Video Processing, 2021, 15(4): 725-733. [39] MUSUNURI Y R, KWON O S.Deep residual dense network for single image super-resolution[J].Electronics, 2021, 10(5):555. [40] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [41] ZHAO T, HU L, ZHANG Y, et al. Super-resolution network with information distillation and multi-scale attention for medical CT image[J]. Sensors (Basel), 2021, 21: 6870. [42] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301. [43] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1664-1673. [44] QIU D, CHENG Y, WANG X, et al. Multi-window back-projection residual networks for reconstructing COVID-19 CT super-resolution images[J]. Comput Methods Programs Biomed, 2021, 200: 105934. [45] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, October 5-9, 2015: 234-241. [46] QIU D, CHENG Y, WANG X. Progressive U-Net residual network for computed tomography images super-resolution in the screening of COVID?19[J]. Journal of Radiation Research and Applied Sciences, 2021, 14(1): 369-379. [47] BING X, ZHANG W, ZHENG L, et al. Medical image super resolution using improved generative adversarial networks[J]. IEEE Access, 2019, 7: 145030-145038. [48] YU P, ZHANG H, KANG H, et al. RPLHR-CT dataset and transformer baseline for volumetric super-resolution from CT scans[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 344-353. [49] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv:1602.07360, 2016. [50] LI Y, IWAMOTO Y, LIN L, et al. VolumeNet: a lightweight parallel network for super-resolution of MR and CT volumetric data[J]. IEEE Transactions on Image Process, 2021, 30: 4840-4854. [51] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883. [52] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2528-2535. [53] HU X, MU H, ZHANG X, et al. Meta-SR: a magnification-arbitrary network for super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1575-1584. [54] ZHU J, TAN C, YANG J, et al. Arbitrary scale super-resolution for medical images[J]. International Journal of Neural Systems, 2021, 31(10): 2150037. [55] DE FARIAS E C, DI NOIA C, HAN C, et al. Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features[J]. Scientific Reports, 2021, 11(1): 21361. [56] 梁聪. 面向图像分类的卷积神经网络损失函数研究[D]. 济南:山东大学, 2020. LIANG C. Study on convolutional neural network loss function for image classification[D].Jinan: Shandong University, 2020. [57] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv:1807.00734, 2018. [58] WANG X, YU K, WU S, et al. EsrGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018. [59] YUAN L, XU X. Adaptive image edge detection algorithm based on canny operator[C]//Proceedings of the 4th International Conference on Advanced Information Technology and Sensor Application (AITS), 2015: 28-31. [60] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014. [61] KHAN S, NASEER M, HAYAT M, et al. Transformers in vision: a survey[J]. ACM Computing Surveys (CSUR), 2022, 54: 1-41. [62] MATSOUKAS C, HASLUM J F, S?DERBERG M, et al. Is it time to replace cnns with transformers for medical images?[J]. arXiv:2108.09038, 2021. [63] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. [64] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [65] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. [66] YAN K, WANG X, LU L, et al. Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 9261-9270. [67] ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 898-916. [68] YANG X, HE X, ZHAO J, et al. COVID-CT-dataset: a CT scan dataset about COVID-19[J]. arXiv:2003.13865, 2020. [69] AGUSTSSON E, TIMOFTE R. Ntire 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 126-135. [70] REHMAN S, MUNIR M K, IQBAL R. Novel coronavirus 2019 (nCoV)[J].Pakistan Journal of Medical Research, 2020, 59(1):1-2. [71] CHEN Z, WANG R F. Application value of CT in the diagnosis and differential diagnosis of novel coronavirus pneumonia[J]. CT Theory & Applications, 2020, 29(3). [72] TAN W, LIU P, LI X, et al. Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network[J]. Health Information Science and Systems, 2021, 9(1): 10. [73] NNEJI G U, DENG J, MONDAY H N, et al. COVID-19 identification from low-quality computed tomography using a modified enhanced super-resolution generative adversarial network plus and siamese capsule network[J]. Healthcare (Basel), 2022, 10(2):403. [74] BACCARELLI E, SCARPINITI M, MOMENZADEH A. Twinned residual auto-encoder (TRAE)—a new DL architecture for denoising super-resolution and task?aware feature learning from COVID-19 CT images[J]. Expert Systems with Applications, 2023, 225: 120104. [75] ZHOU C, XIONG A. Fast image super-resolution using particle swarm optimization-based convolutional neural networks[J]. Sensors (Basel), 2023, 23(4). [76] BRüLLMANN D, SCHULZE R K W. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today?[J]. DentoMaxillo Facial Radiology, 2015, 44(1): 20140204. [77] HATVANI J, HORVáTH A, MICHETTI J, et al. Deep learning-based super-resolution applied to dental computed tomography[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 3(2): 120-128. [78] HATVANI J, BASARAB A, TOURNERET J Y, et al. A tensor factorization method for 3-D Super resolution with application to dental CT[J]. IEEE Transactions on Medical Imaging, 2019, 38(6): 1524-1531. [79] MOHAMMAD-RAHIMI H, VINAYAHALINGAM S, MAHMOUDINIA E, et al. Super-resolution of dental panoramic radiographs using deep learning: a pilot study[J]. Diagnostics (Basel), 2023, 13(5). [80] WANG X, GUO C, ZHA Y, et al. Diagnosis of nonperitonealized colorectal cancer with computerized tomography image features under deep learning[J]. Contrast Media & Molecular Imaging, 2022, 2022: 1886406. [81] LIU D, WANG S, WANG J. The effect of CT high-resolution imaging diagnosis based on deep residual network on the pathology of bladder cancer classification and staging[J]. Computer Methods and Programs in Biomedicine, 2022, 215: 106635. [82] XU J, LIU W, QIN Y, et al. Image super-resolution reconstruction method for lung cancer CT-scanned images based on neural network[J]. BioMed Research International, 2022, 2022: 3543531. [83] ZHU D, SUN D, WANG D. Dual attention mechanism network for lung cancer images super-resolution[J]. Computer Methods and Programs in Biomedicine, 2022, 226: 107101. [84] REN H, EL-KHAMY M, LEE J. CT-SRCNN: cascade trained and trimmed deep convolutional neural networks for image super resolution[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 2018: 1423-1431. [85] PENG C, LIN W A, LIAO H, et al. SAINT: spatially aware interpolation network for medical slice synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020: 7750-7759. [86] ZHAO M, LIU X, LIU H, et al. Super-resolution of cardiac magnetic resonance images using Laplacian pyramid based on generative adversarial networks[J]. Computerized Medical Imaging and Graphics, 2020, 80: 101698. [87] CHI J, ZHANG Y, YU X, et al. Computed tomography (CT) image quality enhancement via a uniform framework integrating noise estimation and super-resolution networks[J]. Sensors (Basel), 2019, 19(15):3348. |
[1] | 陈磊, 习怡萌, 刘立波. 视频文本跨模态检索研究综述[J]. 计算机工程与应用, 2024, 60(4): 1-20. |
[2] | 马汉声, 祝玉华, 李智慧, 阎磊, 司艺艺, 连一萌, 张钰涵. 神经辐射场多视图合成技术综述[J]. 计算机工程与应用, 2024, 60(4): 21-38. |
[3] | 朱凯, 李理, 张彤, 江晟, 别一鸣. 视觉Transformer在低级视觉领域的研究综述[J]. 计算机工程与应用, 2024, 60(4): 39-56. |
[4] | 陈钊鸿, 洪智勇, 余文华, 张昕. 采用平衡函数的大规模多标签文本分类[J]. 计算机工程与应用, 2024, 60(4): 163-172. |
[5] | 张剑锐, 魏霞, 张林鍹, 陈燕楠, 卢杰. 改进YOLO v7的绝缘子检测与定位[J]. 计算机工程与应用, 2024, 60(4): 183-191. |
[6] | 陈丽芳, 罗世勇. 融合卷积和Transformer的多尺度肝肿瘤分割方法[J]. 计算机工程与应用, 2024, 60(4): 270-279. |
[7] | 常戬, 陈洪福, 王冰冰. Transformer与CNN并行引导的水下图像增强[J]. 计算机工程与应用, 2024, 60(4): 280-288. |
[8] | 王永贵, 邹赫宇. 多任务联合学习的图卷积神经网络推荐[J]. 计算机工程与应用, 2024, 60(4): 306-314. |
[9] | 曹策, 陈焰, 周兰江. 基于深度学习和文本情感的上市公司财务舞弊识别方法[J]. 计算机工程与应用, 2024, 60(4): 338-346. |
[10] | 刘炳坤, 皮家甜, 徐进. 结合瓶颈注意力的端到端机械臂视觉伺服研究[J]. 计算机工程与应用, 2024, 60(4): 347-354. |
[11] | 李振江, 魏德健, 冯妍妍, 于丰帆, 马一凡. 表面肌电手部动作识别的研究进展[J]. 计算机工程与应用, 2024, 60(3): 29-43. |
[12] | 曾昊辰, 胡滨, 关治洪. 抑郁症EEG诊断的类脑学习模型[J]. 计算机工程与应用, 2024, 60(3): 157-164. |
[13] | 张鹏, 谢莉, 杨海麟. 用于宫颈细胞分类的轻量级网络ICA-Res2Net[J]. 计算机工程与应用, 2024, 60(3): 187-195. |
[14] | 唐宇, 吴贞东. 基于残差网络的轻量级图卷积推荐方法[J]. 计算机工程与应用, 2024, 60(3): 205-212. |
[15] | 吴则举, 宋丽君, 冀杨. 基于改进特征金字塔的轮胎X光图像缺陷检测[J]. 计算机工程与应用, 2024, 60(3): 270-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||