[1] LEMOULT J, GOTLIB I H. Depression: a cognitive perspective[J]. Clinical Psychology Review, 2019, 69: 51-66.
[2] 王凤琴, 柯亨进. 卷积神经网络及其分析在抑郁症判别中的应用[J]. 计算机工程与应用, 2021, 57(5): 245-250.
WANG F Q, KE H J. Application of CNN and its analysis in depression identification[J]. Computer Engineering and Applications, 2021, 57(5): 245-250.
[3] GHAZI D, LECLERC Y. Collecting and analyzing depression notes using IBM social media analytics[C]//Proceedings of the 25th Annual International Conference on Computer Science and Software Engineering, 2015: 271-273.
[4] ACHARYA U R, OH S L, HAGIWARA Y, et al. Automated EEG-based screening of depression using deep convolutional neural network[J]. Computer Methods and Programs in Biomedicine, 2018, 161: 103-113.
[5] UDDIN M Z, DYSTHE K K, F?LSTAD A, et al. Deep learning for prediction of depressive symptoms in a large textual dataset[J]. Neural Computing and Applications, 2022, 34(1): 721-744.
[6] SHAH D, WANG G Y, DOBORJEH M, et al. Deep learning of EEG data in the neucube brain-inspired spiking neural network architecture for a better understanding of depression[C]//International Conference on Neural Information Processing. Cham: Springer, 2019: 195-206.
[7] UYULAN C, ERGüZEL T T, UNUBOL H, et al. Major depressive disorder classification based on different convolutional neural network models: deep learning approach[J]. Clinical EEG and Neuroscience, 2021, 52(1): 38-51.
[8] MUMTAZ W, QAYYUM A. A deep learning framework for automatic diagnosis of unipolar depression[J]. International Journal of Medical Informatics, 2019, 132: 103983.
[9] 许绍显, 廖小飞, 邵志远, 等. 图数据中极大团枚举问题的求解: 研究现状与挑战[J]. 中国科学: 信息科学, 2022, 52(5): 784-803.
XU S X, LIAO X F, SHAO Z Y, et al. Maximal clique enumeration problem on graphs: status and challenges[J]. Scientia Sinica Informationis, 2022, 52(5): 784-803.
[10] 焦李成. 类脑感知与认知的挑战与思考[J]. 智能系统学报, 2022, 17(1): 213-216.
JIAO L C. Challenges and reflections on brain-like perception and cognition[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 213-216.
[11] HU B, GUAN Z H, CHEN G, et al. Neuroscience and network dynamics toward brain-inspired intelligence[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10214-10227.
[12] CAI H, GAO Y, SUN S, et al. Modma dataset: a multi-modal open dataset for mental-disorder analysis[J]. arXiv:2002.09283, 2020.
[13] WANG Z, TONG Y, HENG X. Phase-locking value based graph convolutional neural networks for emotion recognition[J]. IEEE Access, 2019, 7: 93711-93722.
[14] ST?CKL C, MAASS W. Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes[J]. Nature Machine Intelligence, 2021, 3(3): 230-238.
[15] RUECKAUER B, LUNGU I A, HU Y, et al. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification[J]. Frontiers in Neuroscience, 2017, 11: 682.
[16] KHERADPISHEH S R, MASQUELIER T. Temporal backpropagation for spiking neural networks with one spike per neuron[J]. International Journal of Neural Systems, 2020, 30(6): 2050027.
[17] FRISTON K J. Modalities, modes, and models in functional neuroimaging[J]. Science, 2009, 326(5951): 399-403.
[18] HUMPHRIES M D, GURNEY K, PRESCOTT T J. The brainstem reticular formation is a small-world, not scale-free, network[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1585): 503-511.
[19] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69.
[20] TRAN Y, CRAIG A, CRAIG R, et al. The influence of mental fatigue on brain activity: evidence from a systematic review with meta‐analyses[J]. Psychophysiology, 2020, 57(5): e13554.
[21] HOS?OVECKY M, BABU?IAK B. Brain activity: beta wave analysis of 2D and 3D serious games using EEG[J]. Journal of Applied Mathematics, Statistics and Informatics, 2017, 13(2): 39-53.
[22] MYSIN I, SHUBINA L. From mechanisms to functions: the role of theta and gamma coherence in the intrahippocampal circuits[J]. Hippocampus, 2022, 32(5): 342-358.
[23] SEMKOVSKA M, QUINLIVAN L, O’GRADY T, et al. Cognitive function following a major depressive episode: a systematic review and meta-analysis[J]. The Lancet Psychiatry, 2019, 6(10): 851-861.
[24] ROSSINI P M, DI IORIO R, BENTIVOGLIO M, et al. Methods for analysis of brain connectivity: an IFCN-sponsored review[J]. Clinical Neurophysiology, 2019, 130(10): 1833-1858.
[25] HU L, XIAO M, AI M, et al. Disruption of resting-state functional connectivity of right posterior insula in adolescents and young adults with major depressive disorder[J]. Journal of Affective Disorders, 2019, 257: 23-30.
[26] PADMANABHAN J L, COOKE D, JOUTSA J, et al. A human depression circuit derived from focal brain lesions[J]. Biological Psychiatry, 2019, 86(10): 749-758.
[27] PERRY A, ROBERTS G, MITCHELL P B, et al. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks[J]. Molecular Psychiatry, 2019, 24(9): 1296-1318.
[28] MAGLANOC L A, LANDR? N I, JONASSEN R, et al. Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4(1): 16-26.
[29] MIAO H, ZHONG S, LIU X, et al. Childhood trauma history is linked to abnormal brain metabolism of non-medicated adult patients with major depressive disorder[J]. Journal of Affective Disorders, 2022, 302: 101-109.
[30] FITZGERALD P J, WATSON B O. Gamma oscillations as a biomarker for major depression: an emerging topic[J]. Translational Psychiatry, 2018, 8(1): 1-7. |