[1] JIN W, GE H L, XU X J. A review on unmanned aerial vehicle remote sensing and its application[J]. Remote Sensing Information, 2009(1): 88-92.
[2] KLIPPSTEIN H, SANCHEZ A D D, HASSANIN H, et al. Fused deposition modeling for unmanned aerial vehicles (UAVs): a review[J]. Advanced Engineering Materials, 2018, 20(2): 514-552.
[3] BRIK B, KSENTINI A, BOUAZIZ M. Federated learning for UAVs-enabled wireless networks: use cases, challenges, and open problems[J]. IEEE Access, 2020, 53(8): 841-849.
[4] MILLS J, HU J, MIN G Y. Communication-efficient federated learning for wireless edge intelligence in IoT[J]. IEEE Internet of Things Journal, 2020, 7(7): 5986-5994.
[5] ZHOU Y, PAN C H, YEOH P L, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376-388.
[6] KONE?NY J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[C]//Proceedings of the NIPS Workshop Private Multi-Party, 2016: 125-144.
[7] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transaction Intelligent Systems and Technology, 2019, 10(2): 1-19.
[8] NGUYEN D C, PHAM Q V, PATHIRANA P N, et al. Federated learning for smart healthcare: a survey[J]. ACM Computing Surveys, 2023, 55(3): 1-37.
[9] ZHAO Z, FENG C, YANG H H, et al. Federated-learning-enabled intelligent fog radio access networks: fundamental theory, key techniques, and future trends[J]. IEEE Wireless Communications, 2020, 27(2): 22-28.
[10] RAHMAN S A, TOUT H, TALHI C, et al. Internet of things intrusion detection: centralized, on-device, or federated learning?[J]. IEEE Network, 2020, 34(6): 310-317.
[11] LIU Y, GARG S, NIE J T, et al. Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach[J]. IEEE Internet Things, 2021, 8(8): 6348-6358.
[12] PHAM Q V, ZENG M, RUBY R, et al. UAV communications for sustainable federated learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3944-3948.
[13] YANG Z H, CHEN M Z, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935-1949.
[14] MO X P, XU J. Energy-efficient federated edge learning with joint communication and computation design[J]. Journal of Communications and Information Networks, 2021, 6(2): 110-124.
[15] TRAN N H, BAO W, ZOMAYA A, et al. Federated learning over wireless networks: optimization model design and analysis[C]//Proceedings of the IEEE INFOCOM, 2019: 1387-1395.
[16] LUO B, LI X, WANG S, et al. Cost-effective federated learning design[C]//Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, 2021: 1-10.
[17] SHEN Y, QU Y B, DONG C, et al. Joint training and resource allocation optimization for federated learning in UAV Swarm[J]. IEEE Internet of Things Journal, 2022, 10(3): 2272-2284.
[18] SONG Y, WANG T, WU Y, et al. Non-orthogonal multiple access assisted federated learning for UAV swarms: an approach of latency minimization[C]//Proceedings of the 2021 International Wireless Communications and Mobile Computing, 2021: 1123-1128.
[19] TANG S P, ZHOU W Q, CHEN L Y, et al. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks[J]. Physical Communication, 2021, 47: 1-9.
[20] WEN W L, JIA Y J, XIA W C. Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks[J]. China Communications, 2022, 19(1): 119-135.
[21] ZHANG T, MAO S. Energy-efficient federated learning with intelligent reflecting surface[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 845-858.
[22] PHAM Q V, LE M, HUYNH-THE T, et al. Energy-efficient federated learning over UAV-enabled wireless powered communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4977-4990.
[23] YANG K, JIANG T, SHI Y M, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022-2035.
[24] YOU W J, DONG C, WU Q H, et al. Joint task scheduling, resource allocation, and UAV trajectory under clustering for fanets[J]. China Communications, 2022, 19(1): 104-118.
[25] MRAD I, SAMARA L, ABDELLATIF A A, et al. Federated learning for UAV swarms under class imbalance and power consumption constraints[C]//Proceedings of the IEEE Global Communications Conference (GLOBECOM 2021-2021), 2021: 1384-1401.
[26] HUANG N, WANG T S, WU Y, et al. Delay minimization for intelligent reflecting surface assisted federated learning[J]. China Communications, 2022, 19(4): 216-229.
[27] YANG Z, CHEN M, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935-1949.
[28] HUYNH D V, DO-DUY T, NGUYEN L D, et al. Real-time optimized path planning and energy consumption for data collection in unmanned ariel vehicles-aided intelligent wireless sensing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2753-2761.
[29] LETIZIA N A, SALAMAT B, TONELLO A M. A novel recursive smooth trajectory generation method for unmanned vehicles[J]. IEEE Transactions on Robotics, 2021, 37(5): 1792-1805. |