
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (1): 42-58.DOI: 10.3778/j.issn.1002-8331.2405-0110
宁聪,范菁,孙书魁
出版日期:2025-01-01
发布日期:2024-12-30
NING Cong, FAN Jing, SUN Shukui
Online:2025-01-01
Published:2024-12-30
摘要: 无人机在各行各业中发挥重要作用,多无人机之间的合作已成为研究热点。针对任务分配与路径规划两个核心问题,整理和分析了多无人机协同规划两个关键问题之间的复杂性,以及子问题间的信息耦合因素,并重点探讨了解耦策略;从数学模型方面对多无人机协同规划问题的通用模型进行描述,整理归纳出常见环境建模方法和多目标优化求解的约束条件;综述了基于集中式控制和分布式控制的任务规划方法,以及启发式算法在多无人机协同规划中的应用和研究进展,并重点介绍了多无人机协同规划问题面临实时性要求下的协同规划方法;结合典型研究,讨论了多无人机协同规划问题的未来研究方法与挑战,展望多无人机协同规划的发展。
宁聪, 范菁, 孙书魁. 多无人机协同规划研究综述[J]. 计算机工程与应用, 2025, 61(1): 42-58.
NING Cong, FAN Jing, SUN Shukui. Review of Multi-UAV Collaborative Planning Research[J]. Computer Engineering and Applications, 2025, 61(1): 42-58.
| [1] AMATO C, KONIDARIS G, ANDERS A, et al. Policy search for multi-robot coordination under uncertainty[J]. International Journal of Robotics Research, 2016, 35(14): 1760-1778. [2] ROBIN C, LACROIX S. Multi-robot target detection and tracking: taxonomy and survey[J]. Autonomous Robots, 2016, 40: 729-760. [3] SHUBHANI A, NEERAJ K. Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270-299. [4] MICHAEL J, SOUFIENE D, KRISTOPHER W. Path-planning for unmanned aerial vehicles with environment complexity considerations: a survey[J]. ACM Computing Surveys, 2023,55(11): 1-39. [5] CHEN J C, LING F Y, ZHANG Y, et al. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system[J]. Swarm and Evolutionary Computation, 2022, 69: 101005. [6] 胡嘉薇, 贾泽群, 孙延涛, 等. 多约束条件下多无人机协同任务规划问题分析及求解方法综述[J]. 计算机科学, 2023, 50(7): 176-193. HU J W, JIA Z Q, SUN Y T, et al. Survey of analysis and solutions for multi-UAV cooperative mission planning problem under multi-constraint conditions[J]. Computer Science, 2023, 50(7): 176-193. [7] 赵江, 张璇, 池沛, 等. 空地无人集群自调节控制与动态路径规划方法[J]. 航空学报, 2024, 45(16): 207-226. ZHAO J, ZHANG X, CHI P, et al. Self-adaptive formation control and dynamic path planning for air ground heterogeneous swarm[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 207-226. [8] 白淦清. 基于群体智能的多无人机协同路径规划的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. BAI G Q. Research on distributed multi-UAV collaborative route planning based on swarm intelligence[D]. Harbin: Harbin Institute of Technology, 2021. [9] WU Y, WU S B, HU X T. Multi-constrained cooperative path planning of multiple drones for persistent surveillance in urban environments[J]. Complex & Intelligent Systems, 2021, 7(3): 1633-1647. [10] XU Y, WEI Y, WANG D, et al. multi-UAV path planning in GPS and communication denial environment[J]. Sensors, 2023, 23(6): 2997. [11] 刘希阳. 多无人机协同路径规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. LIU X Y. Research on cooperative path planning for multiple UAVs[D]. Harbin: Harbin Institute of Technology, 2022. [12] XU G T, CAO Y, SUN J L, et al. Real-time path generation for UAV swarms using receding planning frame-work and priority decoupling mechanism[C]//Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), 2021: 4338-4343. [13] AKSHYA J, PRIYADARSINI P L K. Graph-based path planning for intelligent UAVs in area coverage applications[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(6):8191-8203. [14] EV?EN Y. Joint or decoupled optimization: multi-UAV path planning for search and rescue[J]. Ad Hoc Networks, 2023, 138:103018. [15] YANG J, DONG L Y, WANG H, et al. Multi-cooperative UAV mission planning method using hierarchical optimization method[J]. Journal of Commandant Control, 2019, 5(1): 41-46. [16] ZHOU H, ZHANG X Y, TANG A D. Overview on task allocation methods for cooperative multi-target attack[C]//Proceedings of the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2022: 26-33. [17] XIA Q Y, LIU S, GUO M Y, et al. Multi-UAV trajectory planning using gradient-based sequence minimal optimization[J]. Robotics and Autonomous Systems, 2021, 137:103728. [18] 刘正元, 吴元清, 李艳洲, 等. 多无人机群任务规划和编队飞行的综述和展望[J]. 指挥与控制学报, 2023, 9(6): 623-636. LIU Z Y, WU Y Q, LI Y Z, et al. Overview and prospect of multiple UAV swarms mission planning and formation flying[J]. Journal of Command and Control, 2023, 9(6): 623-636. [19] ALI H, XIONG G, HAIDER M H, et al. Feature selection-based decision model for UAV path planning on rough terrains[J]. Expert Systems with Applications, 2023, 232:120713. [20] CUI X H, WANG Y, YANG S, et al. UAV path planning method for data collection of fixed-point equipment in complex forest environment[J]. Frontiers in Neurorobotics, 2022, 16: 1105177. [21] YAN H, FU X. Dynamic path planning of UAV based on KF-RRT algorithm[C]//Proceedings of the 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023: 1348-1352. [22] LI D D, ZHANG F B, FENG J X, et al. LD-SLAM: a robust and accurate GNSS-aided multi-map method for long-distance visual SLAM[J]. Remote Sensing, 2023, 15(18): 4442. [23] MU?OZ J, LóPEZ B, QUEVEDO F, et al. Multi UAV coverage path planning in urban environments[J]. Sensors,2021, 21(21): 7365. [24] YANG Y, LEE S. Efficient multi-UAV path planning for collaborative area search operations[J]. Applied Sciences, 2023,13(15): 8728. [25] SAJAD M, FATEMEH A, JONATHAN D A, et al. Leader-follower based coalition formation in large-scale UAV networks, a quantum evolutionary approach[C]//Proceedings of the IEEE INFOCOM 2018 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018:882-887. [26] GAO C Y, MA J F, LI T, et al. Hybrid swarm intelligent algorithm for multi?UAV formation reconfiguration[J]. Complex & Intelligent Systems, 2023, 9(2): 1929-1962. [27] HUANG G, HU M, YANG X Y, et al. A review of constrained multi-objective evolutionary algorithm-based unmanned aerial vehicle mission planning: key techniques and challenges[J]. Drones, 2024, 8(7): 316. [28] CARLOS E L, MARIJAN V, ANGELA P S. Online trajectory generation with distributed model predictive control for multi-robot motion planning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 604-611. [29] YANG Q Q, DENG M Y, PENG Y. Urban UAV path planning based on improved beetle search algorithm[J]. Journal of System Simulation, 2023, 35(12): 2527-2536. [30] LIU Q, ZHANG Y, LI M, et al. Multi-UAV path planning based on fusion of sparrow search algorithm and improved bioinspired neural network[J]. IEEE Access, 2021, 9: 124670-124681. [31] KHAN A, ZHANG J, AHMAD S, et al. Dynamic positioning and energy-efficient path planning for disaster scenarios in 5G-assisted multi-UAV environments[J]. Electronics, 2022, 11(14): 2197. [32] 霍离俗. 基于进化计算的多无人机协同路径规划研究[D]. 长沙: 国防科技大学, 2021. HUO L S. Research on multi-UAV cooperative path planning based on evolutionary computation[D]. Changsha: National University of Defense Technology, 2021. [33] CHEN Y B, HUANG S B, ROBERT F. Active SLAM for mobile robots with area coverage and obstacle avoidance[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1182-1192. [34] ZHOU X B, MA H J, GU J G, et al. Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism[J]. Engineering Applications of Artificial Intelligence, 2022, 114:105139. [35] XU C, XU M, YIN C J. Optimized multi-UAV cooperative path planning under the complex confrontation environment[J]. Computer Communications, 2020, 162: 196-203. [36] RYOSUKE N, ERIC M, LUIS M, et al. Model-based analysis of multi-UAV path planning for surveying post disaster building damage[J]. Scientific Reports, 2021, 11(1): 18588. [37] CHEN Y, YU J, MEI Y, et al. Modified central force optimization (MCFO) algorithm for 3D UAV path planning[J]. Neurocomputing, 2016, 171: 878-888. [38] 汪繁荣, 杜力, 徐光辉. 基于改进蚁群算法的分布式多机器人协同路径规划[J]. 中南民族大学学报(自然科学版), 2023, 42(5): 650-657. WANG F R, DU L, XU G H. Distributed multi-robot collaborative path planning based on improved ant colony algorithm[J]. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42(5): 650-657. [39] 丁文俊, 柴亚军, 侯冬冬, 等. AUV&UAV跨域协同搜索与跟踪路径规划[J].航空学报, 2023, 44(21): 213-224. DING W J, CHAI Y J, HOU D D, et al. Path planning for AUV&UAV cross domain collaborative search and tracking[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 213-224. [40] QIN Y J, FU L, HE D X, et al. Improved optimization strategy based on region division for collaborative multi-agent coverage path planning[J]. Sensors, 2023, 23(7): 3596. [41] YUAN M S, CHEN M. Improved lazy theta? algorithm based on octree map for path planning of UAV[J]. Defence Technology, 2023, 23: 8-18. [42] 曹宇辉, 解明扬, 李嘉铭, 等. 空地协同作业场景下无人机快速路径规划与自主降落技术[J]. 电光与控制, 2023, 30(10): 1-6. CAO Y H, XIE M Y, LI J M, et al. Rapid path planning and autonomous landing technology of UAVs in air ground collaborative operation scenarios[J]. Electronics Optics & Control, 2023, 30(10): 1-6. [43] HUANG J, LUO Y, QUAN Q, et al. An autonomous task assignment and decision-making method for coverage path planning of multiple pesticide spraying UAVs[J]. Computers and Electronics in Agriculture, 2023, 212: 108128. [44] 李博, 陈梦媛, 杨洪娟, 等. 面向中继通信的空地协同无人机编队控制算法设计与仿真[J]. 电子与信息学报, 2023, 45(8): 2839-2846. LI B, CHEN M Y, YANG H J, et al. Air-ground cooperative UAV formation control algorithm design and simulation for relay communications[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2839-2846. [45] LEA M, PETER S K. Constraint programming approach to coverage path planning for autonomous multi-UAV infra-structure inspection[J]. Drones, 2023, 7(9): 563. [46] LEON-BLANCO J M, GONZALEZ-R P L, ANDRADE-PINEDA J L, et al. A multi-agent approach to the truck multi-drone routing problem[J]. Expert Systems with Applications, 2022, 195: 116604. [47] MD ALI A, HANS D.M, SHANKARACHARY R. UAV formation shape control via decentralized Markov decision processes[J]. Algorithms, 2021, 14(3): 91. [48] PETRA M, BERNHARD R. Distributed and communication aware coalition formation and task assignment in multi-robot systems[J]. IEEE Access, 2021, 9: 35088-35100. [49] MADRIDANO á, AL-KAFF A, MARTíN D, et al. Trajectory planning for multi-robot systems: methods and applications[J]. Expert Systems with Applications, 2021, 173:114660. [50] ZHANG J, TOM V W. Dynamic vehicle routing with random requests: a literature review[J]. International Journal of Production Economics, 2023, 256:108751. [51] LUO X S, MICHAEL M Z. Temporal logic task allocation in heterogeneous multirobot systems[J]. IEEE Transactions on Robotics, 2022, 38(6): 3602-3621. [52] ZHANG R, REN H H, LI X D, et al. UAV cluster task assignment algorithm based on improved artificial gorilla troops optimizer[J]. IEEE Access, 2023, 11:135133-135146. [53] ZHANG P R, FENG Y X, YANG Y K, et al. A dead-lock-free hybrid estimation of distribution algorithm for cooperative multi-UAV task assignment with temporally coupled constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(3): 3329-3344. [54] HYO-SANG S, TENG L, HAE-IN L, et al. Sample greedy based task allocation for multiple robot systems[J]. Swarm Intelligence, 2022, 16(3): 233-260. [55] 肖鹏, 谢锋, 倪海鸿, 等. 多机任务分配与路径规划协同优化方法研究[J]. 系统仿真学报, 2024, 36(5): 1141-1151. XIAO P, XIE F, NI H H, et al. Research on collaborative optimization method of multi-UAV task allocation and path planning[J]. Journal of System Simulation, 2024, 36(5): 1141-1151. [56] HUO L S, ZHU J H, WU G H, et al. A novel simulated annealing-based strategy for balanced UAV task assignment and path planning[J]. Sensors, 2020, 20(17): 4769. [57] YASUSHI K, HIDEAKI Y, TADASHI S, et al. Formation control of swarm robots using mobile agents[J]. Vietnam Journal of Computer Science, 2019, 6(2): 193-222. [58] HAN D, JIANG H, WANG L F, et al. Collaborative task allocation and optimization solution for unmanned aerial vehicles in search and rescue[J]. Drones, 2024, 8(4): 138. [59] HAMZA C, EDOUARD L, FRAN?OIS G, et al. A centrali-zed task allocation algorithm for a multi-robot inspection mission with sensing specifications[J]. IEEE Access, 2023, 11: 99935-99949. [60] DINESH K K, SATAYASAI J N, RACHANA G. A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network[J]. Applied Soft Computing, 2021, 110: 107650. [61] LI S W, TAN F Q, LIU Q. Mobile edge computing tasking offloading strategy in cell-free massive MIMO with graph neural network[C]//Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 2023: 1-3. [62] WALEED E, ARSLAN A, ALIZA M, et al. Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks[J]. Computer Communications, 2020, 155: 150-157. [63] 许笛. 基于改进烟花算法的移动群智感知任务分配[D]. 南京: 南京信息工程大学, 2023. XU D. Mobile swarm intelligent sensing task allocation based on improved fireworks algorithm[D]. Nanjing: Nanjing University of Information Science and Technology, 2023. [64] PENG M S, RICHARD L. Optimal tasking of ground-based sensors for space situational awareness using deep reinforcement learning[J]. Sensors, 2022, 22(20): 7847. [65] 张振国, 毛建旭, 谭浩然, 等. 重大装备制造多机器人任务分配与运动规划技术研究综述[J]. 自动化学报, 2024, 50(1): 21-41. ZHANG Z G, MIAO J X, TAN H R, et al. A review of task allocation and motion planning for multi-robot in major equipment manufacturing[J]. Acta Automatica Sinica, 2024,50(1): 21-41. [66] 翟政, 何明, 徐鹏, 等. 基于市场机制的无人集群任务分配研究综述[J]. 计算机应用研究, 2023, 40(7): 1921-1928. ZHAI Z, HE M, XU P, et al. Research review of task allocation for unmanned swarm based on market mechanism[J]. Application Research of Computers, 2023, 40(7):1921-1928. [67] ZHANG J X, ZONG M Y, ATHANASIOS V V, et al. UAV base station network transmission-based reverse auction mechanism for digital twin utility maximization[J]. IEEE Transactions on Network and Service Management, 2024, 24(1): 324-340. [68] JAVIER G M, FRANCISCO J M, JO?E M M, et al. Multi-robot task allocation clustering based on game theory[J]. Robotics and Autonomous Systems, 2023, 161: 104314. [69] ZHENG J B, DING M H, SUN L, et al. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-UAV cooperative area search[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8290-8303. [70] SWATI L, RANJAN K D, NIKOLA I, et al. Task scheduling in cloud computing: a priority-based heuristic approach[J]. IEEE Access, 2023, 11: 27111-27126. [71] LI J, XIONG Y H, SHE J H. UAV path planning for target coverage task in dynamic environment[J]. IEEE Internet of Things Journal, 2023, 10(20): 17734-17745. [72] 王倩, 杨立炜, 李俊丽, 等. 蚁群融合动态窗口法的分布式多机器人运动规划研究[J]. 重庆邮电大学学报 (自然科学版), 2024, 36(1): 20-28. WANG Q, YANG L W, LI J L, et al. Research on distributed multi-robot motion planning based on ant colony algorithm fusion dynamic window approach[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2024, 36(1): 20-28. [73] HAMID S, JIHONG P, MEHDI B. Remote UAV online path planning via neural network based opportunistic control[J]. IEEE Wireless Communications Letters, 2020, 9(6): 861-865. [74] EDISON E, SHIMA T. Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2011, 38(1): 340-356. [75] GUO Y, LIU X, JIANG W, et al. Collision-free 4D dynamic path planning for multiple UAVs based on dynamic priority RRT* and artificial potential field[J]. Drones, 2023, 7(3): 180. [76] XU H, NIU Z, JIANG B, et al. ERRT-GA: expert genetic algorithm with rapidly exploring random tree initialization for multi-UAV path planning[J]. Drones, 2024, 8(8): 367. [77] ZHANG P, HE Y, WANG Z, et al. Research on multi-UAV obstacle avoidance with optimal consensus control and improved APF[J]. Drones, 2024, 8(6): 248. [78] ZHU Z, YIN Y, LV H. Automatic collision avoidance algorithm based on route plan guided artificial potential field method[J]. Ocean Engineering, 2023, 271: 113737. [79] LI W, WANG L, ZOU A, et al. Path planning for UAV based on improved PRM[J]. Energies, 2022, 15(19): 7267. [80] JIN Q, HU Q, ZHAO P, et al. An improved probabilistic roadmap planning method for safe indoor flights of unmanned aerial vehicles[J]. Drones, 2023, 7(2): 92. [81] HUANG C, DU B, CHEN M. Multi-UAV cooperative online searching based on Voronoi diagrams[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 3038-3049. [82] DU Y W. Multi-UAV search and rescue with enhanced A? algorithm path planning in 3D environment[J]. International Journal of Aerospace Engineering, 2023, 2023(1): 8614117. [83] 邓云峥, 黄翼虎. 复杂动态环境下基于A*的改进DWA算法研究[J]. 电子测量技术, 2023, 46(9): 69-76. DENG Y Z, HUANG Y H. Research on improved DWA algorithm based on A* in complex dynamic environment[J]. Electronic Measurement Technology, 2023, 46(9): 69-76. [84] JABBAR L S, ABASS E I, HASAN S D. A modification of shortest path algorithm according to adjustable weights based on Dijkstra algorithm[J]. Engineering and Technology Journal, 2023, 41(2): 1-16. [85] 马新国, 马希青. 融合改进RRT和Dijkstra算法的机器人动态路径规划[J]. 组合机床与自动化加工技术, 2023(2): 5-9. MA X G, MA X Q. Robot path planning based on improve RRT and Dijkstra approach[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(2): 5-9. [86] XIONG T, LIU F, LIU H T, et al. Multi-drone optimal mission assignment and 3D path planning for disaster rescue[J]. Drones, 2023,7(6): 394. [87] ALI Z A, HAN Z G, DI Z R. Path planning of multiple UAVs using MMACO and DE algorithm in dynamic environment[J]. Measurement and Control, 2023, 56(3/4): 459-469. [88] BUI D N, DUONG T N, PHUNG M D. Ant colony optimization for cooperative inspection path planning using multiple unmanned aerial vehicles[C]//Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII), 2024: 675-680. [89] BAHARCH S, RITA C, ANTóNIO P. A distributed algorithm for real time multi-drone collision free trajectory preplanning[J]. Sensors, 2022, 22(5): 1855. [90] 赖幸君, 唐鑫, 林磊, 等. 基于差分进化粒子群混合算法的多无人机协同区域搜索策略[J]. 弹箭与制导学报, 2024, 44(1): 89-97. LAI X J, TANG X, LIN L, et al. Multi-UAV collaborative area search strategy based on differential evolutionary particle swarm mixing algorithm[J]. Projectiles, Rockets, Missiles and Guidance, 2024, 44(1): 89-97. [91] LU Y, ZHANG X Y. Multiple unmanned aerial vehicles path planning based on collaborative differential evolution[C]//Proceedings of the International Conference on Swarm Intelligence. Cham: Springer Nature Switzerland, 2023. [92] MOHAMED A, SAID E, ABDELLAH A, et al. Optimization of UAV flight paths in multi-UAV networks for efficient data collection[J]. Arabian Journal for Science and Engineering, 2024: 1-26. [93] CHEN H, LIANG Y, MENG X. A UAV path planning method for building surface information acquisition utilizing opposition based learning artificial bee colony algorithm[J]. Remote Sensing, 2023, 15(17): 4312. [94] BAI H, FAN T, NIU Y, et al. Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm[J]. Complex System Modeling and Simulation, 2022, 2(2): 130-141. [95] WU Y, NIE M, MA X, et al. Co-evolutionary algorithm-based multi-unmanned aerial vehicle cooperative path planning[J]. Drones, 2023, 7(10): 606. [96] YU B, FAN S, CUI W, et al. A multi-UAV cooperative mission planning method based on SA-WOA algorithm for three-dimensional space atmospheric environment detection[J]. Robotica, 2024: 1-38. [97] CHENG Z, ZHANG H, GUO L. Multi-UAV cooperative task planning based on an improved adaptive simulated annealing and genetic algorithm[C]//Proceedings of the Third International Conference on Advanced Algorithms and Neural Networks (AANN 2023), 2023: 144-153. [98] BIAN L, SUN W, SUN T Y. Trajectory following and improved differential evolution solution for rapid forming of UAV formation[J]. IEEE Access, 2019,7: 169599-169613. [99] AILLA M S B, AZZEDINE B, LINNYER B R, et al. A novel ant colony-inspired coverage path planning for internet of drones[J]. Computer Networks, 2023, 235: 109963. [100] SAEED R A, OMRI M , ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications, 2022, 34(12): 10133-10155. [101] JIAO K, CHEN J, XIN B, et al. Three-dimensional path planning with enhanced gravitational search algorithm for unmanned aerial vehicle[J]. Robotica, 2024: 1-35. [102] BASTAMI S, DOWLATSHAHI M B. Motion-encoded gravitational search algorithm for moving target search using UAVs[J]. Electronic and Cyber Defense, 2023, 10(4): 63-73. [103] PENG S. Multi-robot path planning combining heuristics and multi-agent reinforcement learning[J]. arXiv:2306. 01270, 2023. [104] YANG X F, SHI Y L, LIU W, et al. Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle[J]. Ocean Engineering, 2022, 266: 112809. [105] LIU Y, ZHENG Z, QIN F, et al. A residual convolutional neural network-based approach for real-time path planning[J]. Knowledge-Based Systems, 2022, 242: 108400. [106] HE L, AOUF N, SONG B. Explainable deep reinforcement learning for UAV autonomous path planning[J]. Aerospace Science and Technology, 2021, 118: 107052. [107] YU W, TANG J, ZHAO Z P. Imitation learning of complex behaviors for multiple drones with limited vision[J]. Drones, 2023, 7(12): 704. [108] ZHAO X, YANG R, ZHONG L, et al. Multi-UAV path planning and following based on multi-agent reinforcement learning[J]. Drones, 2024, 8(1): 18. [109] NIU Z J, JIA X H, YAO W. Communication-free MPC-based neighbors trajectory prediction for distributed multi-UAV motion planning[J]. IEEE Access, 2022(10): 13481-13489. [110] MARTIN J, MAX K, HEMJYOTI D, et al. Motor-level N-MPC for cooperative active perception with multiple heterogeneous UAVs[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2063-2070. [111] IRVING S, JAMES M, READ S, et al. Representation optimal multi-robot motion planning using conflict based search[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4608-4615. [112] JUSTIN K, SHAULL A, MORTEZA L. Conflict-based search for multi-robot motion planning with Kino dynamic constraints[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022: 13494-13499. [113] SHAHNILA R, LIMEI P, SHIHYU C, et al. On collaborative multi-UAV trajectory planning for data collection[J]. Journal of Communications and Networks, 2023, 25(6): 722-733. [114] ERIC H, TAPIO H. Coordination and control of autonomous mobile robot systems with entropy as a dualistic performance measure[C]//Proceedings of the 49th Annual Conference of the IEEE Industrial Electronics Society, 2023: 1-7. [115] TANG J, LIU G, PAN Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643. [116] REN Y H, ZHANG L. An adaptive evolutionary multi-objective estimation of distribution algorithm and its application to multi-UAV path planning[J]. IEEE Access, 2023, 11:50038-50051. |
| [1] | 王新蕾, 王硕, 翟嘉政, 肖瑞林, 廖晨旭. 多任务联合学习下的复杂天气航拍图像目标检测算法[J]. 计算机工程与应用, 2025, 61(2): 97-111. |
| [2] | 鲁宇, 匡金骏, 肖峣, 龚建伟. 启发式搜索的多智能体异速轨迹规划[J]. 计算机工程与应用, 2025, 61(2): 344-354. |
| [3] | 郭敏, 王海晓, 高明星. 基于显著性计算的高落差场景重建方法[J]. 计算机工程与应用, 2025, 61(2): 372-372. |
| [4] | 孙佳宇, 徐民俊, 张俊鹏, 炎梦雪, 操文, 侯阿临. 优化改进YOLOv8无人机视角下目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 109-120. |
| [5] | 梁燕, 何孝武, 邵凯, 陈俊宏. 改进YOLOv8的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 121-130. |
| [6] | 李迪, 肖敏, 任东, 谢咏昶, 姚远. 融合语义分割与模糊推理的无人机应急降落选址算法[J]. 计算机工程与应用, 2025, 61(1): 174-185. |
| [7] | 史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J]. 计算机工程与应用, 2024, 60(9): 79-89. |
| [8] | 欧阳博, 朱勇建, 杨礼康, 王本源. FA-SORT:轻量化的多车辆跟踪算法[J]. 计算机工程与应用, 2024, 60(9): 122-134. |
| [9] | 潘玮, 韦超, 钱春雨, 杨哲. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150. |
| [10] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
| [11] | 郭金, 宋廷强, 孙媛媛, 巩传江, 刘亚林, 马兴录, 范海生. 改进Deeplabv3+的双注意力融合作物分类方法[J]. 计算机工程与应用, 2024, 60(8): 110-120. |
| [12] | 胡峻峰, 李柏聪, 朱昊, 黄晓文. 改进YOLOv8的轻量化无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 182-191. |
| [13] | 彭勇, 任志. 公交辅助无人机的城市物流配送模式研究[J]. 计算机工程与应用, 2024, 60(7): 335-343. |
| [14] | 杨永刚, 谢睿夫, 龚泽川. 改进YOLOv7-tiny的无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 121-129. |
| [15] | 梁帅, 杨学志, 臧宗迪. 无人机平台的人体呼吸率检测[J]. 计算机工程与应用, 2024, 60(6): 323-329. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||