计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (1): 24-41.DOI: 10.3778/j.issn.1002-8331.2407-0038

• 热点与综述 • 上一篇    下一篇

深度学习驱动下的目标检测研究进展综述

山显英,张琳,李泽慧   

  1. 北京建筑大学 电气与信息工程学院,北京 102616
  • 出版日期:2025-01-01 发布日期:2024-12-30

Review of Research Progress in Object Detection Driven by Deep Learning

SHAN Xianying, ZHANG Lin, LI Zehui   

  1. College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
  • Online:2025-01-01 Published:2024-12-30

摘要: 近年来,深度学习在GPU高性能计算能力的加持下得到了迅速推广,并在安防、医疗、工业等领域实现了广泛应用。目标检测模型的性能也在稳步提高,从传统的目标检测方法逐渐过渡到基于卷积神经网络(CNN)深度学习的进一步应用,极大地节省了人力物力。通过参考大量文献,按照两阶段脉络梳理了目标检测的发展历程以及近年深度学习在目标检测领域内的研究进展,对比了在不同数据集上模型网络的性能,总结不同方法的优势与不足,并对领域内重要数据集作了归纳,还对目标检测算法的落地效果做了总结,特别是生活与科技中的实际应用(无人驾驶、医学图像、遥感等)。最后,还对深度学习驱动下目标检测在未来研究上的机遇和挑战作了展望。

关键词: 目标检测, 卷积神经网络, 单阶段, 两阶段, 目标检测应用

Abstract: In recent years, deep learning, driven by high-performance GPU computing, has rapidly expanded into security, healthcare, and industry. Object detection models have evolved from traditional methods to convolutional neural networks (CNN), significantly saving resources. This review outlines the development of object detection and recent advances in deep learning by referencing extensive literature and following a two-stage framework. It compares model performance across different datasets, summarizes the strengths and weaknesses of various methods, and highlights key datasets. The review also discusses the practical applications of object detection algorithms, particularly in autonomous driving, medical imaging, and remote sensing. Finally, it explores the opportunities and challenges for future research in deep learning-driven object detection.

Key words: object detection, convolutional neural networks, single stage, two stages, object detection applications