[1] SUN X, CAI C, SHEN X. A new cloud model based human-machine cooperative path planning method[J]. Journal of Intelligent & Robotic Systems, 2015, 79(1): 3-19.
[2] JIANG H, PI J, LI A, et al. Dynamic local path planning for intelligent vehicles based on sampling area point discrete and quadratic programming[J]. IEEE Access, 2022, 10: 70279-70294.
[3] NYAKUNDI G M. Use of the Hester Davis falls risk assessment scale in medical-surgical patients[D]. Walden University, 2022.
[4] 张立. 工业机械臂的智能运动规划与避障方法研究[D]. 广州: 华南理工大学, 2018.
ZHANG L. Research on intelligent motion planning and obstacle avoidance method of industrial manipulator[D]. Guangzhou: South China University of Technology, 2018.
[5] 陈超, 唐坚, 靳祖光, 等. 一种基于可视图法导盲机器人路径规划的研究[J]. 机械科学与技术, 2014, 33(4): 490-495.
CHEN C, TANG J, JIN Z G, et al. A study on path planning of a guided robot based on visual graph method[J]. Mechanical Science and Technology, 2014, 33(4): 490-495.
[6] 李珺,?段钰蓉,?郝丽艳,?等.?混合优化算法求解同时送取货车辆路径问题[J].?计算机科学与探索,?2022,?16(7):?1623-1632.
LI J, DUAN Y R, HAO L Y, et al. Hybrid optimization algorithm for vehicle routing problem with simultaneous delivery-pickup[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1623-1632.
[7] 张硕航,?郭改枝.?多旅行商模型及其应用研究综述[J].?计算机科学与探索,?2022,?16(7):?1516-1528.
ZHANG S H, GUO G Z. Review of multiple traveling salesman model and its application[J]. Journal of Frontiers of Computer Science and Technology,?2022, 16(7): 1516-1528.
[8] BARBEHENN M. A note on the complexity of Dijkstra??s algorithm for graphs with weighted vertices[J]. IEEE Transactions on Computers, 1998, 47(2): 263.
[9] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[10] HSU D, KINDEL R, LATOMBE J C, et al. Randomized kinodynamic motion planning with moving obstacles[J]. The International Journal of Robotics Research, 2002, 21(3): 233-255.
[11] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.
[12] LAVALLE S M, KUFFNER JR J J. Randomized kino-dynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378-400.
[13] KUFFNER J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 2000, 2: 995-1001.
[14] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894.
[15] GAMMELL J D, BARFOOT T D, SRINIVASA S S. Informed sampling for asymptotically optimal path planning[J]. IEEE Transactions on Robotics, 2018, 34(4): 966-984.
[16] PALMIERI L, ARRAS K O. A novel RRT extend function for efficient and smooth mobile robot motion planning[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 205-211.
[17] 贾浩铎, 房立金, 王怀震. 融合人工势场和Informed-RRT*算法的机械臂自适应路径规划[J/OL]. 计算机集成制造系统 [2023-02-18]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230117.1454.008.html.
JIA H D, FANG L J, WANG H Z. Adaptive path planning for robotic arm incorporating artificial potential field and Informed-RRT* algorithm[J/OL]. Computer Integrated Manufacturing Systems [2023-02-18]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230117.1454.008.html.
[18] 王雨, 刘延俊, 贾华. 基于强化RRT算法的机械臂路径规划[J]. 山东大学学报(工学版), 2022, 52(6): 123-130.
WANG Y, LIU Y J, JIA H. Robotic arm path planning based on enhanced RRT algorithm[J]. Journal of Shandong University (Engineering Edition), 2022, 52(6): 123-130.
[19] 张立彬, 林后凯, 谭大鹏. 基于栅格空间的自适应GB_RRT机械臂路径规划[J]. 计算机集成制造系统, 2022, 28(6): 1638-1649.
ZHANG L B, LIN H K, TAN D P. Adaptive GB_RRT robot arm path planning based on raster space[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1638-1649.
[20] 李耀仲, 王书亭, 蒋立泉. 基于稀疏节点快速扩展随机树的移动机械臂运动规划[J]. 中国机械工程, 2021, 32(12): 1462-1470.
LI Y Z, WANG S T, JIANG L Q. Mobile robotic arm motion planning based on fast expanding random tree with sparse nodes[J]. China Mechanical Engineering, 2021, 32(12): 1462-1470.
[21] 谭薪兴, 李光, 易静, 等. 改进RRT算法的机械臂路径规划[J/OL]. 计算机集成制造系统 [2022-11-29]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220906.1011.002.html.
TAN X X, LI G, YI J, et al. Improved RRT algorithm for robotic arm path planning[J/OL]. Computer Integrated Manufacturing Systems [2022-11-29]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220906.1011.002.html.
[22] LAVALLE S M, KUFFNER J J. Rapidly-exploring random trees: progress and prospects[M]//Algorithmic and computational robotics. Boca Raton: CRC Press, 2001: 303-307.
[23] 徐亚之. 冗余机械臂运动避障与路径规划[D]. 沈阳: 东北大学, 2015.
XU Y Z. Obstacle avoidance and path planning for a redundant manipulator[D]. Shenyang: Northeastern University, 2015.
[24] PAN J, CHITTA S, MANOCHA D. FCL: a general purpose library for collision and proximity queries[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 2012: 3859-3866.
[25] 魏坤. 机械臂混杂场景动态路径规划与多目标识别研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WEI K. Research on dynamic path planning and multi-objective recognition for robotic arm mixed scenes[D]. Harbin: Harbin Institute of Technology, 2019.
[26] 龙樟, 李显涛, 帅涛, 等. 工业机器人轨迹规划研究现状综述[J]. 机械科学与技术, 2021, 40(6): 853-862.
LONG Z, LI X T, SHUAI T, et al. Review of research state of trajectory planning for industrial robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 853-862.
[27] 王兆光, 高宏力, 宋兴国. 基于GB_RRT算法的机械臂路径规划[J]. 机械设计与制造, 2019(7): 1-4.
WANG Z G, GAO H L, SONG X G. Robotic arm path planning based on GB_RRT algorithm[J]. Machine Design and Manufacture, 2019(7): 1-4.
[28] 谭薪兴, 李光, 薛晨慷, 等. 改进适应度函数的CMA-ES算法在机器人逆运动学中的应用[J]. 智能计算机与应用, 2022, 12(2): 18-23.
TAN X X, LI G, XUE C K, et al. Application CMA-ES algorithm with improved fitness function to solve inverse kinematics of robot[J]. Intelligent Computer and Applications, 2022, 12(2): 18-23. |