计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (20): 51-66.DOI: 10.3778/j.issn.1002-8331.2212-0050
王旭,朱其新,朱永红
出版日期:
2023-10-15
发布日期:
2023-10-15
WANG Xu, ZHU Qixin, ZHU Yonghong
Online:
2023-10-15
Published:
2023-10-15
摘要: 路径规划技术是移动机器人避开障碍物且快速移动到目标点的有效方法。为了了解不同环境条件下路径规划策略的发展,找出研究差距,回顾了移动机器人及其路径规划的发展历史;将移动机器人路径规划算法分为两大类:基于先验信息的全局路径规划和基于传感器信息的局部路径规划,重点对相关算法进行了优缺点概述以及分析总结;此外列举了一些新颖的方法,目的是缩短移动机器人的规划时间,亦或是得到最优的路径;强调了移动机器人路径规划算法在未来的几个可以深入研究的方向。
王旭, 朱其新, 朱永红. 面向二维移动机器人的路径规划算法综述[J]. 计算机工程与应用, 2023, 59(20): 51-66.
WANG Xu, ZHU Qixin, ZHU Yonghong. Review of Path Planning Algorithms for Mobile Robots[J]. Computer Engineering and Applications, 2023, 59(20): 51-66.
[1] FRYER D M,MARSHALL J C.The motives of Jacques de Vaucanson[J].Technology and Culture,1979,20(2):257-269. [2] CARRERA R,LOISEAU D,ROUX O,Androids,the Jaquet-Droz automatons[M].Lausanne:Scriptar and Franco Maria Ricci,1979. [3] RUBIO F,VALERO F,LLOPIS-ALBERT C.A review of mobile robots:concepts,methods,theoretical framework,and applications[J].Int J Adv Robot Syst,2019,16(2):1729881419839596. [4] 贾士伟,李军民,邱权,等.基于激光测距仪的温室机器人道路边缘检测与路径导航[J].农业工程学报,2015,31(13):39-45. JIA S W,LI J M,QIU Q,et al.New corridor edge detection and navigation for greenhouse mobile robots based on laser scanner[J].Journal of Agricultural Engineering,2015,31(13):39-45. [5] CHAE H W,CHOI J H,SONG J B.Robust and autonomous stereo visual-inertial navigation for non-holonomic mobile robots[J].IEEE Transactions on Vehicular Technology,2020,69(9):9613-9623. [6] ALI M A H,SHANONO I H.Path planning methods for mobile robots:a systematic and bibliometric review[J].ELEKTRIKA-J Elect Eng,2020,19(3):14-34. [7] 王天然,曲道奎.工业机器人控制系统的开放体系结构[J].机器人,2002(3):256-261. WANG T R,QU D K.Open system arch itecture for control system for industrial robot[J].Robot,2002(3):256-261. [8] 董文杰,霍伟.受非完整约束移动机器人的跟踪控制[J].自动化学报,2000(1):5-10. DONG W J,HUO W.Tracking control of mobile robots with nonholonomic constraint[J].Acta Automatica Sinica,2000(1):5-10. [9] KAZEMI M,GUPTA K K,MEHRANDEZH M.Randomized kinodynamic planning for robust visual servoing[J].IEEE Transactions on Robotics,2013,29(5):1197-1211. [10] GORETKIN G,PEREZ A,PLATT R,et al.Optimal samplingbased planning for linear-quadratic kinodynamic systems[C]//Proc IEEE ICRA,2013:2429-2436. [11] 霍凤财,迟金,黄梓健,等.移动机器人路径规划算法综述[J].吉林大学学报(信息科学版),2018,36(6):639-647. HUO F C,CHI J,HUANG Z J,et al.Review of path planning for mobile robots[J].Journal of Jilin University(Information Science Edition),2018,36(6):639-647. [12] 杨韵,王成彦,巫凯旋,等.移动机器人全局路径规划算法综述[J].信息记录材料,2022,23(3):29-32. YANG Y,WANG C Y,WU K X,et al.Overview of global path planning algorithms for mobile robots[J].Information Recording Materials,2022,23(3):29-32. [13] MAEKAWA T,NODA T,TAMURA S,et al.Curvature continuous path generation for autonomous vehicle using B-spline curves[J].Computer-Aided Design,2010,42(4):350-359. [14] ELLEKILDE L P,PETERSEN H G.Motion planning efficient trajectories for industrial bin-picking[J].The International Journal of Robotics Research,2013,32(9/10):991-1004. [15] JAN G E,SUN C C,TSAI W C,et al.An [O(nlogn)] shortest path algorithm based on delaunay triangulation[J].IEEE/ASME Trans Mechatron,2013,19(2):660-666. [16] ELBANHAWI M,SIMIC M,JAZAR R.Autonomous mobile robot path planning:a novel roadmap approach[J].Appl Mech Mater,2013,373/374/375:246-254. [17] MARTíNEZ-ALFARO H,GóMEZ-GARCíA S.Mobile robot path planning and tracking using simulated annealing and fuzzy logic control[J].Expert Syst Appl,1998,15(3/4):421-429. [18] SERAJI H,HOWARD A.Behavior-based robot navigation on challenging terrain:a fuzzy logic approach[J].IEEE Trans Robot Autom,2002,18(3):308-321. [19] JANGLOVá D.Neural networks in mobile robot motion[J].J Adv Robot Syst,2004,1(1):15-22. [20] GERKE M.Genetic path planning for mobile robots[C]//Proc Amer Control Conf,1999:2424-2429. [21] HU Y,YANG S X,XU L Z,et al.A knowledge based genetic algorithm for path planning in unstructured mobile robot environments[C]//2004 IEEE International Conference on Robotics and Biomimetics,2004:767-772. [22] GARCIA M A P,MONTIEL O,CASTILLO O,et al.Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[J].Applied Soft Computing,2009,9(3):1102-1110. [23] 徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2):29-34. XU G B,YIN Y X,ZHOU M J.Present situation and prospect of the technologies of intelligent mobile robots[J].Robot Technology and Application,2007(2):29-34. [24] DIJKSTRA E W.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1:269-271. [25] 乐阳,龚健雅.Dijkstra最短路径算法的一种高效率实现[J].武汉测绘科技大学学报,1999(3):209-212. LE Y,GONG J Y.An efficient implementation of shortest path algorithm based on Dijikstra algorithm[J].Journal of Wuhan Technical University of Surveying and Mapping,1999(3):209-212. [26] HARTOMO K,ISMANTO B,NUGRAHA A,et al.Searching the shortest route to distribute disaster’s logistical assistance using Dijkstra method[J].Journal of Physics:Conference Series,2019,1402(7):077014. [27] MING Y,LI Y,ZHANG Z,et al.A survey of path planning algorithms for autonomous vehicles[J].SAE International Journal of Commercial Vehicles,2021,14:97-109. [28] 张瑜,宋荆洲,张琪祁.基于改进动态窗口法的户外清扫机器人局部路径规划[J].机器人,2020,42(5):617-625. ZHANG Y,SONG J Z,ZHANG Q Q.Local path planning of outdoor cleaning robot based on an improved DWA[J].Robot,2020,42(5):617-625. [29] WAI R J,LIU C M,LIN Y W.Design of switching path-planning control for obstacle avoidance of mobile robot[J].Journal of the Franklin Institute,2011,348(4):718-737. [30] ALSHAMMREI S,BOUBAKER S,KOLSI L.Improved Dijkstra algorithm for mobile robot path planning and obstacle avoidance[J].Comput Mater Contin,2022,72:5939-5954. [31] DURAKLI Z,NABIYEV V.A new approach based on Bezier curves to solve path planning problems for mobile robots[J].Journal of Computational Science,2022,58:101540. [32] 王辉,朱龙彪,王景良,等.基于Dijkstra-蚁群算法的泊车系统路径规划研究[J].工程设计学报,2016,23(5):489-496. WANG H,ZHU L B,WANG J L,et al.Research on path planing of parking system based on Dijkstra-ant colony hybrid algorithm[J].Journal of Engineering Design,2016,23(5):489-496. [33] 李全勇,李波,张瑞,等.基于改进Dijkstra算法的AGV路径规划研究[J].机械工程与自动化,2021(1):23-25. LI Q Y,LI B,ZHANG R,et al.Research on AGV path planning based on improved Dijkstra algorithm[J].Mechanical Engineering and Automation,2021(1):23-25. [34] 姜辰凯,李智,盘书宝,等.基于改进Dijkstra算法的AGVs无碰撞路径规划[J].计算机科学,2020,47(8):272-277. JIANG C K,LI Z,PAN S B,et al.Collision-free path planning of AGVs based on improved Dijkstra algorithm[J].Computer Science,2020,47(8):272-277. [35] 李梦雅,王军,沈航.洪灾应急疏散路径规划算法优化[J].地球信息科学学报,2016,18(3):362-368. LI M Y,WANG J,SHEN H.Optimization of evacuation routes planning algorithms for flood events[J].Journal of Geo-Information Science,2016,18(3):362-368. [36] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107. [37] BENGIO Y.Deep learning of representations:looking forward[C]//Proc Int Conf Stat Lang Speech Process,2013:1-37. [38] SINGH Y,SHARMA S,SUTTON R,et al.A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J].Ocean Engineering,2018,169:187-201. [39] YANG J M,TSENG C M,TSENG P S.Path planning on satellite images for unmanned surface vehicles[J].International Journal of Naval Architecture and Ocean Engineering,2015,7(1):87-99. [40] 孙刚,伍江江,陈浩,等.一种基于切比雪夫距离的隐式偏好多目标进化算法[J].计算机科学,2022,49(6):297-304. SUN G,WU J J,CHEN H,et al.Hidden preference-based multi-objective evolutionary algorithm based on Chebyshev distance[J].Computer Science,2022,49(6):297-304. [41] WANG X D.Path planning of scenic spots based on improved a* algorithm[J].Scientific Reports,2022,12:1320. [42] ERKE S,BIN D,YIMING N,et al.An improved A-star based path planning algorithm for autonomous land vehicles[J].International Journal of Advanced Robotic Systems,2020,17(5):1729881420962263. [43] XIONG X,MIN H,YU Y,et al.Application improvement of A* algorithm in intelligent vehicle trajectory planning[J].Math Biosci Eng,2021,18(1):1-21. [44] ZHENG T,XU Y,ZHENG D.AGV path planning based on improved A-star algorithm[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),2019:1534-1538. [45] ZHANG Y,LI L,LIN H C,et al.Development of path planning approach using improved A-star algorithm in AGV system[J].Journal of Internet Technology,2019,20(3):915-924. [46] 付丽霞,任玉洁,张勇,等.基于改进平滑A~*算法的移动机器人路径规划[J].计算机仿真,2020,37(8):271-276. FU L X,REN Y J,ZHANG Y,et al.Path planning of mobile robot based on improved smoothing A* algorithms[J].Computer Simulation,2020,37(8):271-276. [47] SONG R,LIU Y,BUCKNALL R.Smoothed A* algorithm for practical unmanned surface vehicle path planning[J].Applied Ocean Research,2019,83:9-20. [48] WANG H,YIN P,ZHENG W,et al.Mobile robot path planning based on improved A* algorithm and dynamic window method[J].Robot,2020,42(3):92-99. [49] LAVALLE S.Rapidly-exploring random trees:a new tool for path planning[R].Research Report,1998. [50] 康亮,赵春霞,郭剑辉.未知环境下改进的基于RRT算法的移动机器人路径规划[J].模式识别与人工智能,2009,22(3):337-343. KANG L,ZHAO C X,GUO J H.Improved path planning based on rapidly-exploring random tree for mobile robot in unknown environment[J].Pattern Recognition and Artificial Intelligence,2009,22(3):337-343. [51] 陈秋莲,蒋环宇,郑以君.机器人路径规划的快速扩展随机树算法综述[J].计算机工程与应用,2019,55(16):10-17. CHEN Q L,JIANG H Y,ZHENG Y J.Summary of rapidly-exploring random tree algorithm in robot path planning[J].Computer Engineering and Applications,2019,55(16):10-17. [52] LI B H,CHEN B.An adaptive rapidly-exploring random tree[J].IEEE/CAA Journal of Automatica Sinica,2021,9(2):283-294. [53] KANG J G,LIM D W,CHOI Y S,et al.Improved RRT-connect algorithm based on triangular inequality for robot path planning[J].Sensors,2021,21(2):333. [54] JEONG I B,LEE S J,KIM J H.Quick-RRT*:triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J].Expert Systems with Applications,2019,123:82-90. [55] LIAO B,WAN F,HUA Y,et al.F-RRT*:an improved path planning algorithm with improved initial solution and convergence rate[J].Expert Systems with Applications,2021,184:115457. [56] WANG W,ZUO L,XU X.A learning-based multi-RRT approach for robot path planning in narrow passages[J].J Intelligent & Robotic Systems,2018,90(1/2):81-100. [57] LAI T,RAMOS F,FRANCIS G.Balancing global exploration and local-connectivity exploitation with rapidly-exploring random disjointedtrees[C]//Proc Int Conf Robotics and Automation(ICRA),2019:5537-5543. [58] LAI T,MORERE P,RAMOS F,et al.Bayesian local sampling based planning[J].IEEE Robotics and Automation Letters,2020,5(2):1954-1961. [59] 张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005(2):439-443. ZHANG H D,ZHENG R,CEN Y W.Present situation and future development of mobile robot path planning technology[J].Journal of System Simulation,2005(2):439-443. [60] ZHANG Z J,LU R,ZHAO M,et al.Robot path planning based on genetic algorithm with hybrid initialization method[J].Journal of Intelligent & Fuzzy Systems,2022,42(3):2041-2056. [61] LEE J,KIM D W.An effective initialization method for genetic algorithm-based robot path planning using a directed a cyclic graph[J].Information Sciences,2016,332:1-18. [62] HAO K,ZHAO J,YU K,et al.Path planning of mobile robots based on a multi-population migration genetic algorithm[J].Sensors,2020,20(20):5873. [63] LI K R,HU Q,LIU J.Path planning of mobile robot based on improved multiobjective genetic algorithm[J].Wireless Communications and Mobile Computing,2021:8836615. [64] 张铮,柯子鹏,周嘉政,等.基于改进多目标自适应遗传算法的机器人路径规划[J].西安理工大学学报,2023,39(1):69-78. ZHENG Z,KE Z P,ZHOU J Z,et al.Robot path planning based on improved multi-objective adaptive genetic algorithm[J].Journal of Xi’an University of Technology,2023,39(1):69-78. [65] LAMINI C,BENHLIMA S,ELBEKRI A.Genetic algorithm based approach for autonomous mobile robot path planning[J].Procedia Computer Science,2018,127:180-189. [66] ZHANG Q B,LI X D.A new crossover mechanism for genetic algorithms with variable-length chromosomes for path optimization problems[J].Expert Systems with Applications,2016,60:183-189. [67] PATLE B K,PARHI D R K,JAGADEESH A,et al.Matrix-binary codes based genetic algorithm for path planning of mobile robot[J].Computers & Electrical Engineering,2018,67:708-728. [68] DOOSTIE S,HOSHIAR A K,NAZARAHARI M,et al.Optimal path planning of multiple nanoparticles in continuous environment using a novel adaptive genetic algorithm[J].Precision Engineering,2018,53:65-78. [69] NI J J,WANG K,HUANG H,et al.Robot path planning based on an improved genetic algorithm with variable length chromosome[C]//2016 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD),2016:145-149. [70] CHEN J W,ZHU H,ZHANG L,et al.Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization[J].Ocean Engineering,2018,156:217-223. [71] ROBERGE V,TARBOUCHI M.Massively parallel hybrid algorithm on embedded graphics processing unit for unmanned aerial vehicle path planning[J].International Journal of Digital Signals and Smart Systems,2018,2(1):68-93. [72] KUMAR A,KUMAR P B,PARHI D R.Intelligent navigation of humanoids in cluttered environments using regression analysis and genetic algorithm[J].Arabian Journal for Science and Engineering,2018,43:1-24. [73] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C]//IEEE International Conference on Robotics and Automation,1985:500-505. [74] 樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005(5):29-33. FAN X P,LI S Y,CHEN T F.Dynamic obstacle-avoiding path plan for robots based on a new artificial potential field function[J].Control Theory and Application,2005(5):29-33. [75] ZHU Q D,YAN Y,XING Z.Robot path planning based on artificial potential field approach with simulated annealing[C]//Sixth International Conference on Intelligent Systems Design and Applications,2006:622-627. [76] ABDALLA T Y,ABED A A,AHMED A A.Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control[J].Journal of Intelligent & Fuzzy Systems,2017,32(6):3893-3908. [77] ZHANG C.Path planning for robot based on chaotic artificial potential field method[C]//IOP Conference Series:Materials Science and Engineering,2018. [78] WANG H,HUANG Y,KHAJEPOUR A,et al.Local path planning for autonomous vehicles:crash mitigation[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium(IV),Changshu,China,June 26-30,2018:1062-1067. [79] WANG P W,GAO S,LI L,et al.Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm[J].Energies,2019,12(12):2342. [80] YAO Q F,ZHENG Z,QI L,et al.Path planning method with improved artificial potential field—a reinforcement learning perspective[J].IEEE Access,2020,8:135513-135523. [81] LIN Z N,YUE M,CHEN G,et al.Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles[J].Transactions of the Institute of Measurement and Control,2022,44(1):121-132. [82] DUHé J F,VICTOR S,MELCHIOR P.Contributions on artificial potential field method for effective obstacle avoidance[J].Fractional Calculus and Applied Analysis,2021,24(2):421-446. [83] STENTZ A.The focussed D* algorithm for real-time replanning[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence,1995:1652-1659. [84] DRAKE D,KOZIOL S,CHABOT E.Mobile robot path planning with a moving goal[J].IEEE Access,2018,6:12800-12814. [85] PRZYBYLSKI M,PUTZ B.D* extra lite:a dynamic A* with search-tree cutting and frontier-gap repairing[J].International Journal of Applied Mathematics and Computer Science,2017,27:273-290. [86] XU X N,CHEN J,LIAO Y,et al.Auto-splitting D* lite path planning for large disaster area[J].Intelligent Service Robotics,2022:1-18. [87] YU J H,YANG M,ZHAO Z,et al.Path planning of unmanned surface vessel in an unknown environment based on improved D* lite algorithm[J].Ocean Engineering,2022,266:112873. [88] SUN B,ZHANG W,LI S,et al.Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment[J].The Journal of Navigation,2022:1-20. [89] REN Z Q,RATHINAM S,LIKHACHEV M,et al.Multi-objective path-based D* lite[J].IEEE Robotics and Automation Letters,2022,7(2):3318-3325. [90] LI M Z,CHUANG M L,KUO S T,et al.UAV swarm real-time rerouting by edge computing D* lite algorithm[J].Applied Sciences,2022,12(3):1056. [91] KIRKPATRICK S,GELATT JR C D,VECCHi P.Optimization by simulated-annealing[J].Science,1983,220:671-680. [92] TAVARES R S,MARTINS T C,TSUZUKI M S G.Simulated annealing with adaptive neighborhood:a case study in off-line robot path planning[J].Expert Systems with Applications,2011,38(4):2951-2965. [93] GANESHMURTHY M S,SURESH G R.Path planning algorithm for autonomous mobile robot in dynamic environment[C]//2015 3rd International Conference on Signal Processing,Communication and Networking(ICSCN),2015:1-6. [94] SUN Q,ZHANG H,DANG J.Two-stage vehicle routing optimization for logistics distribution based on HSA-HGBS algorithm[J].IEEE Access,2022,10:99646-99660. [95] MIAO H,TIAN Y C.Dynamic robot path planning using an enhanced simulated annealing approach[J].Applied Mathematics and Computation,2013,222:420-437. [96] ZHANG Q,JIA C M,QIANG L.Path planning based quadtree representation for mobile robot using hybrid-simulated annealing and ant colony optimization algorithm[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation,2012. [97] ZHAI L Z,FENG S.A novel evacuation path planning method based on improved genetic algorithm[J].Journal of Intelligent & Fuzzy Systems,2022:1-11. [98] CORDóN O,HERRERA F,HERRERA-VIEDMA E,et al.Genetic algorithms and fuzzy logic in control processes[J].Control Sci,1996,5:135-168. [99] 陈卫东,李宝霞,朱奇光.模糊控制在移动机器人路径规划中的应用[J].计算机工程与应用,2009,45(31):221-223. CHEN W D,LI B X,ZHU Q G.Application of fuzzy control in mobile robot path planning[J].Computer Engineering and Applications,2009,45(31):221-223. [100] SONG Q,ZHAO Q,WANG S,et al.Dynamic path planning for unmanned vehicles based on fuzzy logic and improved ant colony optimization[J].IEEE Access,2020,8:62107-62115. [101] MIRZA N.Robotic path planning and fuzzy neural networks[J].Int Arab J Inf Technol,2020,17:615-620. [102] WANG N,XU H,LI C,et al.Hierarchical path planning of unmanned surface vehicles:a fuzzy artificial potential field approach[J].International Journal of Fuzzy Systems,2021,23(6):1797-1808. [103] LEE D.A path planning algorithm for AUV using fuzzy logic and artificial potential field[J].Journal of Institute of Control Robotics and Systems,2022,28(6):589-595. [104] SUN B,ZHU D Q,YANG S X.An optimized fuzzy control algorithm for three-dimensional AUV path planning[J].Int J Fuzzy Syst,2018,20(2):597-610. [105] GHARAJEH M S,JOND H B.An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system[J].Ain Shams Engineering Journal,2022,13(1):101491. [106] WANG J H,XU Z,ZHENG X,et al.A fuzzy logic path planning algorithm based on geometric landmarks and kinetic constraints[J].Information Technology and Control,2022,51(3):499-514. [107] DORIGO M.Optimization,learning and natural algorithms[D].Politecnico di Milano,1992. [108] 游晓明,刘升,吕金秋.一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J].控制与决策,2017,32(3):552-556. YOU X M,LIU S,LV J Q.Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J].Control and Decision-making,2017,32(3):552-556. [109] 江明,王飞,葛愿,等.基于改进蚁群算法的移动机器人路径规划研究[J].仪器仪表学报,2019,40(2):113-121. JIANG M,WANG F,GE Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Chinese Journal of Scientific Instrument,2019,40(2):113-121. [110] 张九龙,王晓峰,芦磊,等.若干新型智能优化算法对比分析研究[J].计算机科学与探索,2022,16(1):88-105. ZHANG J L,WANG X F,LU L,et al.Analysis and research of several new intelligent optimization algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):88-105. [111] UTKARSH R,MADHU K.Mobile robot path planning with modified ant colony optimization[J].Int J Bio-Inspired Comput,2017,9:106-113. [112] WANG L N,WANG H,YANG X,et al.Research on smooth path planning method based on improved ant colony algorithm optimized by Floyd algorithm[J].Frontiers in Neurorobotics,2022,16:955179. [113] LUO Q,WANG H,ZHENG Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Neural Computing and Applications,2020,32(6):1555-1566. [114] AKKA K,KHABER F.Mobile robot path planning using an improved ant colony optimization[J].International Journal of Advanced Robotic Systems,2018,15(3):1729881418774673. [115] URIOL R,MORAN A.Mobile robot path planning in complex environments using ant colony optimization algorithm[C]//Proceedings of the 3rd International Conference on Control,Automation and Robotics(ICCAR),Nagoya,Japan,April 24-26,2017:15-21. [116] DAI X L,LONG S,ZHANG Z.Mobile robot path planning based on ant colony algorithm with A? heuristic method[J].Front Neurorobotics,2019,13:15. [117] YANG H,QI J,MIAO Y,et al.A new robot navigation algorithm based on a double-layer ant algorithm and trajectory optimization[J].IEEE Transactions on Industrial Electronics,2018,66(11):8557-8566. [118] 李丹.改进群智能优化算法的海上物流配送路径优化方法[J].舰船科学技术,2020,42(16):184-186. LI D.Optimization method of marine logistics distribution path based on improved swarm intelligence optimization algorithm[J].Ship Science and Technology,2020,42(16):184-186. [119] 张荣霞,武长旭,孙同超,等.深度强化学习及在路径规划中的研究进展[J].计算机工程与应用,2021,57(19):44-56. ZHANG R X,WU C X,SUN T C,et al.Progress on deep reinforcement learning in path planning[J].Computer Engineering and Applications,2021,57(19):44-56. [120] SUTTON R S,BARTO A G.Introduction to reinforcement learning[M].2nd ed.London,UK:MIT Press,2018:1-528. [121] BAE H,KIM G,KIM J,et al.Multi-robot path planning method using reinforcement learning[J].Appl Sci,2019,9:3057. [122] MAW A A,TYAN M,NGUYEN T A,et al.iADA*-RL:anytime graph-based path planning with deep reinforcement learning for an autonomous UAV[J].Applied Sciences,2021,11(9):3948. [123] ZENG J Y,LIANG Z H.Research on the application of supervised reinforcement learning in path planning[J].Comput Appl Softw,2018,35:185-188. [124] LOW E S,ONG P,CHEAH K C.Solving the optimal path planning of a mobile robot using improved Q-learning[J].Robotics and Autonomous Systems,2019,115:143-161. [125] BONNY T,KASHKASH M.Highly optimized q-learning-based bees approach for mobile robot path planning in static and dynamic environments[J].Journal of Field Robotics,2022,39(4):317-334. [126] ABDI A,RANJBAR M H,PARK J H.Computer vision-based path planning for robot arms in three-dimensional workspaces using q-learning and neural networks[J].Sensors,2022,22(5):1697. [127] SAHU B,DAS P K,RANJAN KABAT M.Multi-robot cooperation and path planning for stick transporting using improved Q-learning and democratic robotics PSO[J].Journal of Computational Science,2022,60:101637. [128] 钟倩漪,钱谦,伏云发,等.粒子群优化算法在关联规则挖掘中的研究综述[J].计算机科学与探索,2021,15(5):777-793. ZHONG Q Y,QIAN Q,FU Y F,et al.Survey of particle swarm optimization algorithm for association rule mining[J].Journal of Frontiers of Computer Science and Technology,2021,15(5):777-793. [129] KIM H W,LEE W C.Real-time path planning through Q-learning’s exploration strategy adjustment[C]//2021 International Conference on Electronics,Information,and Communication(ICEIC),2021:1-3. [130] GUO X W,PENG G,MENG Y.A modified q-learning algorithm for robot path planning in a digital twin assembly system[J].The International Journal of Advanced Manufacturing Technology,2022,119(5):3951-3961. [131] ASGHARI A,SOHRABI M K,YAGHMAEE F.Task scheduling,resource provisioning,and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm[J].The Journal of Supercomputing,2021,77:2800-2828. [132] SADHU A K,KONAR A.An efficient computing of correlated equilibrium for cooperative Q-learning-based multi-robot planning[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,50(8):2779-2794. [133] OROZCO-ROSAS U,MONTIEL O,SEPúLVEDA R.Parallel bacterial potential field algorithm for path planning in mobile robots:a GPU implementation[J].Fuzzy Logic Augmentation of Neural and Optimization Algorithms:Theoretical Aspects and Real Applications,2018:207-222. [134] 董培方,张志安,梅新虎,等.引入势场及陷阱搜索的强化学习路径规划算法[J].计算机工程与应用,2018,54(16):129-134. DONG P F,ZHANG Z A,MEI X H,et al.Reinforcement learning path planning algorithm based on gravitational potential field and trap search[J].Computer Engineering and Applications,2018,54(16):129-134. [135] KUNDU S,PARHI D R.Navigation of underwater robot based on dynamically adaptive harmony search algorithm[J].Memetic Computing,2016,8(2):125-146. [136] GHOSH S,PANIGRAHI P K,PARHI D R.Analysis of FPA and BA meta‐heuristic controllers for optimal path planning of mobile robot in cluttered environment[J].IET Science,Measurement & Technology,2017,11(7):817-828. [137] PARHI D R,KUNDU S.Navigational control of underwater mobile robot using dynamic differential evolution approach[J].Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2017,231(1):284-301. [138] FEVGAS G,LAGKAS T,ARGYRIOU V,et al.Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles[J].Sensors,2022,22(3):1235. |
[1] | 彭泽鑫, 曾碧, 刘建圻. 基于全局特征点匹配的全局定位方法[J]. 计算机工程与应用, 2023, 59(3): 264-275. |
[2] | 吴斌, 张新, VIALOVA Varvara. 面向实际工况的AGV局部路径规划及跟踪研究[J]. 计算机工程与应用, 2023, 59(20): 295-305. |
[3] | 王唯鉴, 王勇, 杨骁, 吕宗喆, 吴宗毅. 移动机器人行人避让策略强化学习研究[J]. 计算机工程与应用, 2023, 59(18): 316-322. |
[4] | 乔磊, 李宗刚, 杜亚江. 有限时间内非完整移动机器人编队控制[J]. 计算机工程与应用, 2023, 59(13): 74-81. |
[5] | 陈丹, 吴欣. 移动机器人改进激光SLAM算法研究[J]. 计算机工程与应用, 2022, 58(4): 163-168. |
[6] | 董荣, 厉茂海, 林睿, 刘仕琦, 丁文. 多相机与IMU融合的室外机器人定位方法研究[J]. 计算机工程与应用, 2022, 58(3): 289-296. |
[7] | 黄梦涛, 李智伟. 改进ARA*算法的移动机器人路径规划[J]. 计算机工程与应用, 2022, 58(24): 291-297. |
[8] | 丁承君, 阎欣怡, 冯玉伯, 贾丽臻. 基于APF的AGV局部路径规划改进算法研究[J]. 计算机工程与应用, 2022, 58(22): 305-312. |
[9] | 白雄, 鲁吉林, 路宽, 陈鹏云, 崔俊杰, 刘泽华. 融合环境信息和运动约束的改进A*算法研究[J]. 计算机工程与应用, 2022, 58(18): 311-317. |
[10] | 王迪,李彩虹,郭娜,刘国名,高腾腾. 基于模糊势场法的移动机器人局部路径规划[J]. 计算机工程与应用, 2021, 57(6): 212-218. |
[11] | 蒋林,方东君,雷斌,李维刚. 单目视觉移动机器人导航算法研究现状及趋势[J]. 计算机工程与应用, 2021, 57(5): 1-9. |
[12] | 杨凌耀,张爱华,张洁,宋季强. 栅格地图环境下机器人速度势实时路径规划[J]. 计算机工程与应用, 2021, 57(24): 290-295. |
[13] | 张子然,黄卫华,陈阳,章政,李梓远. 基于双向搜索的改进蚁群路径规划算法[J]. 计算机工程与应用, 2021, 57(21): 270-277. |
[14] | 涂睿,王文格,卢成阳. 移动机器人实时采样路径重规划[J]. 计算机工程与应用, 2021, 57(20): 157-163. |
[15] | 林韩熙,向丹,欧阳剑,兰晓东. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||