计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (4): 163-168.DOI: 10.3778/j.issn.1002-8331.2009-0264
陈丹,吴欣
CHEN Dan, WU Xin
摘要: 针对传统RBPF(Rao-Blackwellised particle filter)算法存在定位精度低、粒子退化、粒子多样性丧失的问题,提出了一种基于激光雷达的改进SLAM(simultaneous localization and mapping)算法。首先基于主成分分析法对相邻帧的点云进行粗配准,再采用改进点到线迭代最近点配准算法校正粗配准结果完成精确配准。改进重采样算法中,在多次复制大权重粒子集合的情况下引入小权重粒子集合,改善粒子多样性缺乏问题,提高了移动机器人定位精度。最后将改进算法应用于Turtlebot机器人,实验结果表明,改进的基于激光雷达的SLAM算法在定位精度和建图准确度方面相比于传统算法效果更好。