计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (18): 281-288.DOI: 10.3778/j.issn.1002-8331.2103-0440
李二超,齐款款
LI Erchao, QI Kuankuan
摘要:
针对机器人在静态环境下全局路径规划存在无法找到最短路径,收敛速度慢,路径搜索盲目性大,拐点多等问题,提出一种改进双向蚁群算法。以栅格地图为机器人运行环境,对障碍物有效顶点进行定义、编码和运用,同时结合以相同障碍物有效顶点为相遇条件的双向蚁群算法,双向交替进行路径搜索,能够快速地找到更短路径,得到的路径拐点更少。引入改进的状态转移规则,能够加快搜索速度。在启发函数中引入可调常数因子,在以障碍物有效顶点为路径搜索的节点,每走一步相当于传统算法的一步或多步行走。动态调整挥发系数并设置信息素浓度范围,能够避免陷入早熟。通过与其他算法仿真对比,验证了改进算法的可行性、有效性和优越性。