[1] LI C, HUANG X, DING J, et al. Global path planning based on a bidirectional alternating search A* algorithm for mobile robots[J]. Computers & Industrial Engineering, 2022, 168: 108123.
[2] 于军琪, 陈易圣, 冯春勇, 等. 智能建造机器人局部路径规划研究综述[J]. 计算机工程与应用, 2024, 60(10): 16-29.
YU J Q, CHEN Y S, FENG C Y, et al. Review of research on local path planning for intelligent construction robots[J]. Computer Engineering and Applications, 2024, 60(10): 16-29.
[3] 李逸飞, 王书亭, 熊体凡, 等. 兼顾启停特性和转角时耗的移动机器人路径规划[J]. 西安交通大学学报, 2023, 57(2): 192-202.
LI Y F, WANG S T, XIONG T F, et al. Mobile robot path planning considering start-stop characteristics and corner time consumption[J]. Journal of Xi’an Jiaotong University, 2023, 57(2): 192-202.
[4] BANSAL S, TOLANI V, GUPTA S, et al. Combining optimal control and learning for visual navigation in novel envi-ronments[C]//Proceedings of the Conference on Robot Learning, 2020: 420-429.
[5] KALOGEITON V S, IOANNIDIS K, SIRAKOULIS G C, et al. Real-time active SLAM and obstacle avoidance for an autonomous robot based on stereo vision[J]. Cybernetics and Systems, 2019, 50(3): 239-260.
[6] 王秀丽, 周鹏, 侯静楠, 等. 面向变电站机器人巡检路径规划中的算法研究[J]. 计算机工程与应用, 2021, 57(14): 245-250.
WANG X L, ZHOU P, HOU J N, et al. Research on algorithm of inspection path planning for substation robot[J]. Computer Engineering and Applications, 2021, 57(14): 245-250.
[7] 李文峰, 徐蕾, 杨琳琳, 等. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验[J]. 南京农业大学学报南京农业大学学报, 2024, 47(4): 823-834.
LI W F, XU L, YANG L L, et al. Multi field path planning method and experiment of agricultural robot based on improved ant colony algorithm[J]. Journal of Nanjing Agricultural University, 2024, 47(4): 823-834.
[8] 马小康, 白宗文, 杨延宁, 等. 融合灰狼算法和人工势场法的搜救机器人路径规划研究[J]. 制造业自动化, 2024, 46(4): 48-52.
MA X K, BAI Z W, YANG Y N, et al. Research on path planning for search and rescue robots by fusing grey wolf algorithm and artificial potential field method[J]. Manufacturing Automation, 2024, 46(4): 48-52.
[9] 刘进. 轨道交通车辆吹扫机器人智能路径规划研究[J]. 机械制造与自动化, 2024, 53(4): 245-249.
LIU J. Research on intelligent path planning of purging robot for rail vehicle[J]. Machine Building & Automation, 2024, 53(4): 245-249.
[10] KYPRIANOU G, DOITSIDIS L, CHATZICHRISTOFIS S A. Towards the achievement of path planning with multi-robot systems in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2022, 104(1): 15.
[11] 黄荣杰, 王亚刚. 基于可视图与改进遗传算法的机器人平滑路径规划[J]. 控制工程, 2024, 31(4): 678-686.
HUANG R J, WANG Y G. Smooth path planning for robot based on visibility graph and improved genetic algorithm[J]. Control Engineering of China, 2024, 31(4): 678-686.
[12] ELHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of Computational Science, 2018, 25: 339-350.
[13] 孟浩德, 吴征天, 吴闻笛, 等. 基于改进模拟退火算法的灭火小车多目标路径规划[J]. 计算机与数字工程, 2024, 52(2): 394-398.
MENG H D, WU Z T, WU W D, et al. Multi-objective path planning of fire fighting vehicle based on monotone simulated annealing algorithm and A*algorithm [J]. Computer & Digital Engineering, 2024, 52(2): 394-398.
[14] 毛照昉, 王威, 方侃, 等. 基于模拟退火算法的人机协同装配线平衡问题研究[J]. 控制与决策, 2024, 39(10): 3366-3374.
MAO Z F, WANG W, FANG K, et al. Research on the human-robot collaborative assembly line balancing problem based on simulated annealing algorithm[J]. Control and Decision, 2024, 39(10): 3366-3374.
[15] WU L, HUANG X, CUI J, et al. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot[J]. Expert Systems with Applications, 2023, 215: 119410.
[16] LUO Q, WANG H, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32: 1555-1566.
[17] MIAO C, CHEN G, YAN C, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & Industrial Engineering, 2021, 156: 107230.
[18] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the International Conference on Neural Networks, 1995: 1942-1948.
[19] 孔鹏飞. 融合爬山策略的改进粒子群混合路径规划算法[J]. 电光与控制, 2024, 31(9): 6-11.
KONG P F. Improved particle swarm hybrid path planning algorithm with mountain climbing strategy[J]. Electronics Optics & Control, 2024, 31(9): 6-11.
[20] LAVALLE S M, KUFFNER J J. Rapidly-exploring random trees: progress and prospects[J]. Algorithmic and Computational Robotics, 2001: 303-307.
[21] 曹园山, 成月, 郑鹏, 等. 基于多约束的改进RRT*算法三维全局路径规划研究[J]. 舰船科学技术, 2024, 46(8): 14-18.
CAO Y S, CHENG Y, ZHENG P, et al. Research on improved RRT* algorithm based on multiple constraints for 3D global path planning[J]. Ship Science and Technology, 2024, 46(8): 14-18.
[22] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 2022, 1: 269-271.
[23] 闫恩雪, 张石强. 基于Dijkstra算法的搬运车省时路径规划研究[J]. 价值工程, 2024, 43(12): 26-29.
YAN E X, ZHANG S Q, Research on time-saving route planning of truck based on dijkstra algorithm[J]. Value Engineering, 2024, 43(12): 26-29.
[24] SáNCHEZ-IBá?EZ J R, PéREZ-DEL-PULGAR C J, GARCíA-CEREZO A. Path planning for autonomous mobile robots: a review[J]. Sensors, 2021, 21(23): 7898.
[25] 崔冰, 赵辉军, 段景文, 等. 基于改进A*算法的地下自动驾驶铲运机路径规划[J]. 矿业研究与开发, 2024, 44(5): 185-193.
CUI B, ZHAO H J, DUAN J W, et al. Path planning of under ground autonomous LHD machines based on improved A? algorithm[J]. Mining Research and Development, 2024, 44(5): 185-193.
[26] 张方方, 于洪岩, 辛健斌, 等. 基于自适应地图环境改进A*算法的机器人路径规划[J/OL]. 控制工程: 1-10[2024-05-20].https://www.cnki.com.cn/Article/CJFDTotal-JZDF20
240507002.htm.
ZHANG F F, YU H Y, XIN J B, et al. Improved robot path planning based on adaptive map environment A* algorithm[J/OL]. Control Engineering of China: 1-10[2024-05-20]. https://www.cnki.com.cn/Article/CJFDTotal-JZDF20240507002.htm.
[27] 宋卫猛, 王毅. 基于自适应启发函数和逆向寻优策略的改进 A* 移动机器人路径规划算法[J]. 计算机测量与控制, 2025, 33(1): 173-180.
SONG W M, WANG Y. Improved A* algorithm of mobile robot path planning based on adaptive heuristic function and reverse optimization strategy[J]. Computer Measurement & Control, 2025, 33(1): 173-180.
[28] 倪建云, 吴杰, 薛晨阳, 等. 融合改进A*和蚁群算法的机器人路径规划[J]. 天津理工大学学报, 2025, 41(2): 73-80.
NI J Y, WU J, XUE C Y, et al. Robot path planning incorporating improved A* and ant colony optimization[J]. Journal of Tianjin University of Technology, 2025, 41(2): 73-80.
[29] 赖荣燊, 窦磊, 巫志勇, 等. 融合改进A*算法和动态窗口法的移动机器人路径规划[J]. 系统仿真学报, 2024, 36(8): 1884-1894.
LAI R S, DOU L, WU Z Y, et al. Fusion of Improved A* and dynamic window approach for mobile robot path planning[J]. Journal of System Simulation, 2024, 36(8): 1884-1894. |