计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (5): 309-322.DOI: 10.3778/j.issn.1002-8331.2405-0318

• 工程与应用 • 上一篇    下一篇

基于改进A*算法的机器人不平坦地形全局路径规划

郭聚刚,于军琪,冯春勇,王凯,陈易圣,董振平   

  1. 1.西安建筑科技大学 建筑设备科学与工程学院,西安 710055
    2.西安建筑科技大学 机电学院,西安 710055
    3.西安建筑科技大学 土木工程学院,西安 710055
  • 出版日期:2025-03-01 发布日期:2025-03-01

Global Path Planning for Robots on Uneven Terrain Based on Improved A* Algorithm

GUO Jugang, YU Junqi, FENG Chunyong, WANG Kai, CHEN Yisheng, DONG Zhenping   

  1. 1.School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    2.School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    3.School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Online:2025-03-01 Published:2025-03-01

摘要: 针对机器人在非结构化和不平整地形的路径规划问题,提出了一种基于改进A*算法的全局路径规划方法。改进A*算法引入双向搜索策略以提高算法计算速度。通过路径节点过滤克服了双向搜索策略带来的问题并减少了关键节点的数量,增加坡度约束降低了机器人的爬坡角度和侧倾角度,提高了规划路径的安全性,通过Bézier曲线拟合路径使其变得光滑,更有利于机器人的运动控制。在不同地形和障碍密度的高程图上进行实验,验证了改进的有效性。实验结果表明,与传统A*算法相比,改进A*算法在路径长度增加14.6%至37.84%的情况下,计算时间减少了71.05%至82.90%,关键节点数量减少了51.94%至70.53%,并且爬坡角度和侧倾角度显著减少,路径更加平滑。因此,该方法在提高效率的同时能够在非结构化和不平坦的地形下生成安全可靠的路径。

关键词: 路径规划, 不平坦地形, 改进A*算法, 移动机器人

Abstract: Addressing the autonomous path planning problem for robots in unstructured and uneven sites, this paper proposes a global path planning method based on an Improved A* algorithm. The Improved A* algorithm first introduces a bidirectional search strategy to speed up computation. It uses path node filtering to overcome issues caused by bidirectional search and to reduce the number of critical nodes. By adding slope constraints, the robot’s climbing and tilting angles are reduced, improving path safety. Paths are smoothed using Bézier curve fitting, aiding robot motion control. The algorithm’s effectiveness is validated through experiments on elevation maps with varying terrain and obstacle densities. Simulation results show that the Improved A* algorithm reduces computation time by 71.05% to 82.90% and the number of critical nodes by 51.94% to 70.53%, while increasing path length by 14.6% to 37.84%. Climbing and tilting angles are significantly reduced, and paths become smoother. Therefore, the proposed method enhances efficiency while generating safe and reliable paths in unstructured and uneven terrains.

Key words: path planning, uneven terrain, Improved A* algorithm, mobile robot