[1] 任生兰, 石建业, 张小泉, 等. 设施农业喷雾机器人路径规划与作业安全性探析[J]. 现代农业科技, 2019(17): 169-171.
REN S L, SHI J Y, ZHANG X Q, et al. Path planning and operational safety analysis of agricultural spray robot in facilities[J]. Modern Agricultural Science and Technology, 2019(17): 169-171.
[2] 成家骏, 谢锐, 荆瑞俊. 农业机器人路径规划算法研究[J]. 自动化与仪表, 2021, 36(1): 41-44.
CHENG J J, XIE R, JING R J. Research on path planning algorithm of agricultural robot[J]. Automation and Instrumentation, 2021, 36(1): 41-44.
[3] 王梓强, 胡晓光, 李晓筱, 等. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19-29.
WANG Z Q, HU X G, LI X X, et al. Review of global path planning algorithms for mobile robots[J]. Computer Science, 2021, 48(10): 19-29.
[4] KARUR K, SHARNA N, DHARMATT C, et al. A survey of path planning algorithms for mobile robots[J]. Vehicles, 2021, 3(3): 448-468.
[5] CHAKRABORTY S, ELANGOVAN D, GOVINDARAJAN P L, et al. A comprehensive review of path planning for agricultural ground robots[J]. Sustainability, 2022, 14(15): 9156.
[6] ZONG C, HAN X, ZHANG D, et al. Research on local path planning based on improved RRT algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(8): 2086-2100.
[7] 赵卫东, 章争生, 陈文博. 基于A*算法的局部路径规划算法[J]. 安徽工业大学学报 (自然科学版), 2023, 40(1): 70-75.
ZHAO W D, ZHANG Z S, CHEN W B. Local path planning algorithm based on A* algorithm[J]. Journal of Anhui University of Technology (Natural Science Edition), 2023, 40(1): 70-75.
[8] 胡春阳, 姜平, 周根荣. 改进蚁群算法在AGV路径规划中的应用[J]. 计算机工程与应用, 2020, 56(8): 270-278.
HU C Y, JIANG P, ZHOU G R. Application of improved ant colony algorithm in AGV path planning[J]. Computer Engineering and Applications, 2020, 56(8): 270-278.
[9] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189.
[10] 石志刚,梅松. 基于人工势场法的移动机器人路径规划研究现状与展望[J]. 中国农机化学报, 2021, 42(12): 182-188.
SHI Z G, MEI S. Research status and prospect of path planning of mobile robot based on artificial potential field method[J]. Chinese Journal of Agricultural Mechanization, 2021, 42(12): 182-188.
[11] CHANG L, SHAN L. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J]. Autonomous Robots, 2021, 45(1): 51-76.
[12] LIU Z, LIU H. A dynamic fusion pathfinding algorithm using Delaunay triangulation and improved A?star for mobile robots[J]. IEEE Access, 2021, 9: 20602-20621.
[13] 程永红, 王萌. 基于改进A*算法的农业机器人路径规划系统设计[J]. 农机化研究, 2023, 45(3):83-87.
CHENG Y H, WANG M. Design of path planning system for agricultural robot based on improved A* algorithm[J]. Journal of Agricultural Mechanization Research, 2023, 45(3): 83-87.
[14] 秦富贞, 曹爱霞. 园林自动喷药机器人杂草识别与导航方法探究[J]. 农机化研究, 2019, 41(10): 234-237.
QIN F Z, CAO A X. Study on weed identification and navigation method of garden automatic spraying robot[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 234-237.
[15] 庄丽阳, 陈树林, 朱龙彪, 等. 基于改进蚁群算法的农用喷药机器人路径规划[J]. 机床与液压, 2018, 46(21): 15-19.
ZHUANG L Y, CHEN S L, ZHU L B, et al. Path planning of agricultural spraying robot based on improved ant colony algorithm[J]. Machine Tool and Hydraulics, 2018, 46(21): 15-19.
[16] 陆向龙, 吴春笃, 杨官学, 等. 改进A*和DWA算法的果园喷雾机器人路径规划[J]. 计算机工程与应用, 2023, 59(18): 323-328.
LU X L, WU C D, YANG G X, et al. Path planning of orchard spray robot based on improved A* and DWA algorithm[J]. Computer Engineering and Applications, 2023, 59(18): 323-328.
[17] 李扬丹, 卢志权, 白晓丽, 等. 不同种植密度和留果穗数对早春大棚番茄产量和品质的影响[J]. 北方园艺, 2018(11): 38-42.
LI Y D, LU Z Q, BAI X L, et al. Effects of different planting densities and number of fruit ears on yield and quality of tomatoes in early spring greenhouses[J]. Northern Horticulture, 2018(11): 38-42.
[18] 王豪杰, 马向华, 代婉玉, 等. 改进DWA算法的移动机器人避障研究[J]. 计算机工程与应用, 2023, 59(6): 326-332.
WANG H J, MA X H, DAI W Y, et al. Research on obstacle avoidance of mobile robot with improved DWA algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 326-332. |