[1] Federal Aviation Administration. Airport foreign object debris detection equipment: AC 150/5220-24[R]. 2009.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[7] ZHOU F, ZHAO H, NIE Z. Safety helmet detection based on YOLOv5[C]//Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications, 2021: 6-11.
[8] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[10] CAO X, WANG P, MENG C, et al. Region based CNN for foreign object debris detection on airfield pavement[J]. Sensors, 2018, 18(3): 737.
[11] LI P, LI H. Research on FOD detection for airport runway based on YOLOv3[C]//Proceedings of the 2020 39th Chinese Control Conference, 2020: 7096-7099.
[12] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[13] 郭晓静, 隋昊达. 改进YOLOv3在机场跑道异物目标检测中的应用[J]. 计算机工程与应用, 2021, 57(8): 249-255.
GUO X J, SUI H D. Application of improved YOLOv3 in foreign object debris target detection on airfield pavement[J]. Computer Engineering and Applications, 2021, 57(8): 249-255.
[14] 何自芬, 陈光晨, 王森, 等. 融合自注意力特征嵌入的夜间机场跑道异物入侵检测[J]. 光学精密工程, 2022, 30(13): 1591-1605.
HE Z F, CHEN G C, WANG S, et al. Detection of foreign object debris on night airport runway fusion with self-attentional feature embedding[J]. Optics and Precision Engineering, 2022, 30(13): 1591-1605.
[15] 曾琛, 王玄. 基于无人机和CNN图像识别的机场跑道异物搜寻与定位[J]. 兵器装备工程学报, 2022, 43(10): 10-17.
ZENG C, WANG X. Airport runway foreign object search and localization based on UAV and CNN image recognition[J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 10-17.
[16] 李小军, 邓月明, 陈正浩, 等. 改进YOLOv5的机场跑道异物目标检测算法[J]. 计算机工程与应用, 2023, 59(2): 202-211.
LI X J, DENG Y M, CHEN Z H, et al. Improved YOLOv5’s foreign object debris detection algorithm for airport runways[J]. Computer Engineering and Applications, 2023, 59(2): 202-211.
[17] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[18] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[19] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 286-301.
[20] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel “squeeze & excitation” in fully convolutional networks[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Sep 16-20, 2018. Cham: Springer, 2018: 421-429.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19. |