计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (10): 16-29.DOI: 10.3778/j.issn.1002-8331.2309-0203
于军琪,陈易圣,冯春勇,苏煜聪,郭聚刚
出版日期:
2024-05-15
发布日期:
2024-05-15
YU Junqi, CHEN Yisheng, FENG Chunyong, SU Yucong, GUO Jugang
Online:
2024-05-15
Published:
2024-05-15
摘要: 智能建造机器人作为落实建筑业智能化转型的关键设备,其自主施工能力代表着智能建造的水平,而局部路径规划是机器人高效施工的关键技术。针对建筑施工现场的环境特点,探究了智能建造机器人局部路径规划的难点。首先分析阐述了人工势场、时间弹性带、Bug、动态窗口等经典局部路径规划算法;其次对强化学习、深度强化学习、模糊控制、群智能等人工智能的局部路径规划算法进行了归纳总结;最后分析了各种方法在施工现场环境中智能建造机器人应用的局限性,讨论了智能建造机器人局部路径规划算法的发展趋势,旨在为复杂施工现场智能建造机器人局部路径规划研究提供一定的思路和建议,提高机器人的自主施工能力,促进智能建造技术的发展。
于军琪, 陈易圣, 冯春勇, 苏煜聪, 郭聚刚. 智能建造机器人局部路径规划研究综述[J]. 计算机工程与应用, 2024, 60(10): 16-29.
YU Junqi, CHEN Yisheng, FENG Chunyong, SU Yucong, GUO Jugang. Review of Research on Local Path Planning for Intelligent Construction Robots[J]. Computer Engineering and Applications, 2024, 60(10): 16-29.
[1] 张皓涵. 建筑施工机器人技术的应用与发展[J]. 广东建材, 2021, 37(8): 74-78. ZHANG H H. Application and development of robotics in building construction[J]. Guangdong Building Materials, 2021, 37(8): 74-78. [2] LIU W, LI Z, SUN S, et al. Design a novel target to improve positioning accuracy of autonomous vehicular navigation system in GPS denied environments[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7575-7588. [3] GAO Y, CHIEN S. Review on space robotics: toward top-level science through space exploration[J]. Science Robotics, 2017, 2(7): 5074. [4] RANGAPUR I, PRASAD B K S, SURESH R. Design and development of spherical spy robot for surveillance operation[J]. Procedia Computer Science, 2020, 171: 1212-1220. [5] PATIL D, ANSARI M, TENDULKAR D, et al. A survey on autonomous military service robot[C]//Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering, 2020: 1-7. [6] HUANG X, CAO Q, ZHU X. Mixed path planning for multi-robots in structured hospital environment[J]. The Journal of Engineering, 2019(14): 512-516. [7] KAYACAN E, KAYACAN E, RAMON H, et al. Towards agrobots: trajectory control of an autonomous tractor using type-2 fuzzy logic controllers[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(1): 287-298. [8] 陈翀, 李星, 邱志强, 等. 建筑施工机器人研究进展[J]. 建筑科学与工程学报, 2022, 39(4): 58-70. CHEN C, LI X, QIU Z Q, et al. Research progress of construction robot[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 58-70. [9] HEWAWASAM H, IBRAHIM Y, KAHANDAWA G. A novel optimistic local path planner: agoraphilic navigation algorithm in dynamic environment[J]. Machines, 2022, 10(11): 1085. [10] 翟敬梅, 刘坤, 徐晓. 室内移动机器人自主导航系统设计与方法[J]. 计算机集成制造系统, 2020, 26(4): 890-899. ZHAI J M, LIU K, XU X. Autonomous indoor navigation system of mobile robot[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 890-899. [11] 李二超, 王玉华. 改进人工势场法的移动机器人避障轨迹研究[J]. 计算机工程与应用, 2022, 58(6): 296-304. LI E C, WANG Y H. Research on obstacle avoidance trajectory of mobile robot based on improved artificial potential field[J]. Computer Engineering and Applications, 2022, 58(6): 296-304. [12] 李晓旭, 马兴录, 王先鹏. 移动机器人路径规划算法综述[J]. 计算机测量与控制, 2022, 30(7): 9-19. LI X X, MA X L, WANG X P. A survey of path planning algorithms for mobile robot[J]. Computer Measurement & Control, 2022, 30(7): 9-19. [13] DAI X, LI C K, RAD A B. An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(3): 285-293. [14] KAMIL F, HONG T S, KHAKSAR W, et al. New robot navigation algorithm for arbitrary unknown dynamic environments based on future prediction and priority behavior[J]. Expert Systems with Applications, 2017, 86: 274-291. [15] ZHANG X, ZHU T, DU L, et al. Local path planning of autonomous vehicle based on an improved heuristic Bi-RRT algorithm in dynamic obstacle avoidance environment[J]. Sensors, 2022, 22(20): 7968. [16] R?SMANN C, FEITEN W, W?SCH T, et al. Trajectory modification considering dynamic constraints of autonomous robots[C]//Proceedings of the 7th German Conference on Robotics, 2012: 1-6. [17] 代婉玉, 张丽娟, 吴佳峰, 等. 改进TEB算法的局部路径规划算法研究[J]. 计算机工程与应用, 2022, 58(8): 283-288. DAI W Y, ZHANG L J, WU J F, et al. Research on local path planning algorithm based on improved TEB algorithm[J]. Computer Engineering and Applications, 2022, 58(8): 283-288. [18] 程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23): 29-34. CHENG Z, ZHANG Z A, LI J Z, et al. Mobile robots path planning based on improved artificial potential field[J]. Computer Engineering and Applications, 2019, 55(23): 29-34. [19] 许万, 程兆, 朱力, 等. 一种基于改进人工势场法的局部路径规划算法[J]. 电子测量技术, 2022, 45(19): 83-88. XU W, CHENG Z, ZHU L, et al. A local path planning algorithm based on improved artificial potential field method[J]. Electronic Measurement Technology, 2022, 45(19): 83-88. [20] 易先军, 耿翰夫, 付龙, 等. 模糊改进人工势场法移动机器人路径规划[J]. 组合机床与自动化加工技术, 2021(5): 65-68. YI X J, GENG H F, FU L, et al. Mobile robot path planning based on fuzzy improved artificial potential field method[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(5): 65-68. [21] 徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40(12): 3508-3512. XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40(12): 3508-3512. [22] 王兵, 吴洪亮, 牛新征. 基于改进势场法的机器人路径规划[J]. 计算机科学, 2022, 49(7): 196-203. WANG B, WU H L, NIU X Z. Robot path planning based on improved potential field method[J]. Computer Science, 2022, 49(7): 196-203. [23] 杜婉茹, 王潇茵, 田涛, 等. 面向未知环境及动态障碍的人工势场路径规划算法[J]. 计算机科学, 2021, 48(2): 250-256. DU W R, WANG X Y, TIAN T, et al. Artificial potential field path planning algorithm for unknown environment and dynamic obstacles[J]. Computer Science, 2021, 48(2): 250-256. [24] 张铮, 薛波, 柯子鹏, 等. 改进人工势场算法的路径规划[J/OL].西安理工大学学报 (2023-09-04)[2023-11-29]. http://kns.cnki.net/kcms/detail/61.1294.N.20230904.1221.006.html. ZHANG Z, XUE B, KE Z P, et al. Robot local path planning based on improved artificial potential field method[J/OL]. Journal of Xi’an University of Technology (2023-09-04) [2023-11-29]. http://kns.cnki.net/kcms/detail/61.1294. N.20230904.1221.006.html. [25] 郭明皓, 姬鹏, 黄海威. 基于改进人工势场法的无人车路径规划与跟踪控制[J/OL].系统仿真学报 (2023-09-15)[2023-11-27]. https://doi.org/10.16182/j.issn1004731x.joss. 23-0768. GUO M H, JI P, HUANG H W. Unmanned vehicle path planning and tracking control based on improved artificial potential field method[J/OL]. Journal of System Simulation (2023-09-15) [2023-11-27]. https://doi.org/10.16182/j.issn1004731x. joss.23-0768. [26] 郑凯林, 韩宝玲, 王新达. 基于改进TEB算法的阿克曼机器人运动规划系统[J]. 科学技术与工程, 2020, 20(10): 3997-4003. ZHENG K L, HAN B L, WANG X D. Ackerman robot motion planning system based on improved TEB algorithm[J]. Science Technology and Engineering, 2020, 20(10): 3997-4003. [27] 陈曦, 石博强, 郭辉. 优化TEB算法的四轮差速机器人局部路径规划[J]. 软件, 2022, 43(6): 133-137. CHEN X, SHI B Q, GUO H. Local path planning of four-wheel differential robot based on optimized TEB algorithm[J]. Software, 2022, 43(6): 133-137. [28] 文郁, 黄江帅, 江涛, 等. 安全平滑的改进时间弹性带轨迹规划算法[J]. 控制与决策, 2022, 37(8): 2008-2016. WEN Y, HUANG J S, JIANG T, et al. Safe and smooth improved time elastic band trajectory planning algorithm[J]. Control and Decision, 2022, 37(8): 2008-2016. [29] 陈奕梅, 沈建峰, 李柄棋. 改进TEB算法的多机器人动态避障策略研究[J]. 电光与控制, 2022, 29(5): 107-112. CHEN Y M, SHEN J F, LI B Q. On dynamic obstacle avoidance strategy for multi-robot with improved TEB algorithm[J]. Electronics Optics & Control, 2022, 29(5): 107-112. [30] 陈纪廷, 郭晨, 刘毅. 基于时间弹性带的移动机器人路径优化方法[J]. 科学技术与工程, 2021, 21(26): 11212-11219. CHEN J T, GUO C, LIU Y. Path optimization method for mobile robot based on timed elastic band[J]. Science Technology and Engineering, 2021, 21(26): 11212-11219. [31] 吴涛, 谢志军, 陈科伟. 改进D*lite和时间弹性带法的移动机器人路径规划[J]. 传感技术学报, 2022, 35(4): 486-494. WU T, XIE Z J, CHEN K W. Path planning base on improved D*lite and time elastic band for mobile robot[J]. Chinese Journal of Sensors and Actuators, 2022, 35(4): 486-494. [32] 高欣宇, 田国富. 融合改进A*和TEB算法的机器人路径规划[J]. 组合机床与自动化加工技术, 2023(8): 42-46. GAO X Y, TIAN G F. Robot path planning based on the fusion of improved A* and TEB algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(8): 42-46. [33] 徐定明, 李子信, 张怡俊. 建筑机器人融合改进的A*与TEB算法的运动规划研究[J]. 智能计算机与应用, 2022, 12(12): 55-61. XU D M, LI Z X, ZHANG Y J. Research on motion planning of construction robots based on improved A* and TEB algorithm[J]. Intelligent Computer and Applications, 2022, 12(12): 55-61. [34] XU Q L, YU T, BAI J. The mobile robot path planning with motion constraints based on bug algorithm[C]//Proceedings of the 2017 Chinese Automation Congress, 2017: 2348-2352. [35] MELO W D, JORGE D, MARQUES V. Low-cost thermal explorer robot using a hybrid neural networks and intelligent bug algorithm model[J]. International Journal of Computer Applications in Technology, 2021, 65(3): 245-252. [36] SIVARANJANI S, NANDESH D A, GAYATHRI K, et al. An investigation of bug algorithms for mobile robot navigation and obstacle avoidance in two-dimensional unknown static environments[C]//Proceedings of the 2021 International Conference on Communication Information and Computing Technology, 2021: 1-6. [37] 孙伶玉, 付主木, 陶发展, 等. 改进人工势场的智能车避障算法研究[J]. 河南科技大学学报 (自然科学版), 2022, 43(5): 28-34. SUN L Y, FU Z M, TAO F Z, et al. Obstacle avoidance algorithm of autonomous vehicle based on an improved artificial potential field[J]. Journal of Henan University of Science and Technology (Natural Science), 2022, 43(5): 28-34. [38] NELOY M, DAS M, BARUA P, et al. An intelligent obstacle and edge recognition system using bug algorithm[J]. American Scientific Research Journal for Engineering, Technology, and Sciences, 2020, 64(1): 133-143. [39] SOUIDI M E H, PIAO S, LI G. Mobile agents path planning based on an extension of bug-algorithms and applied to the pursuit-evasion game[J]. Web Intelligence, 2017, 15(4): 325-334. [40] DAS S K, ROY K, PANDEY T, et al. Modified critical point—a bug algorithm for path planning and obstacle avoiding of mobile robot[C]//Proceedings of the 2020 International Conference on Communication and Signal Processing, 2020: 351-356. [41] 卞永明, 季鹏成, 周怡和, 等. 基于改进型DWA的移动机器人避障路径规划[J]. 中国工程机械学报, 2021, 19(1): 44-49. BIAN Y M, JI P C, ZHOU Y H, et al. Obstacle avoidance path planning of mobile robot based on improved DWA[J]. Chinese Journal of Construction Machinery, 2021, 19(1): 44-49. [42] 张瑜, 宋荆洲, 张琪祁. 基于改进动态窗口法的户外清扫机器人局部路径规划[J]. 机器人, 2020, 42(5): 617-625. ZHANG Y, SONG J Z, ZHANG Q Q. Local path planning of outdoor cleaning robot based on an improved DWA[J]. Robot, 2020, 42(5): 617-625. [43] 智宝岩. 矿区井下无人运载车辆全局约束下的局部路径规划方法[J]. 中国设备工程, 2022(24): 141-142. ZHI Y B. Local path planning method for unmanned underground delivery vehicles in mining areas under global constraints[J]. China Plant Engineering, 2022(24): 141-142. [44] 王瑞民, 张江, 崔俊杰, 等. 基于改进DWA算法的无人车避障研究[J]. 机械设计与制造工程, 2023, 52(5): 37-42. WANG R M, ZHANG J, CUI J J, et al. Research on obstacle avoidance of unmanned vehicle based on improved DWA algorithm[J]. Machine Design and Manufacturing Engineering, 2023, 52(5): 37-42. [45] 王豪杰, 马向华, 代婉玉, 等. 改进DWA算法的移动机器人避障研究[J]. 计算机工程与应用, 2023, 59(6): 326-332. WANG H J, MA X H, DAI W Y, et al. Research on obstacle avoidance of mobile robot based on improved DWA algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 326-332. [46] 王旭扬, 梁志伟, 高翔, 等. 基于改进DWA算法的足球机器人局部轨迹规划[J]. 国外电子测量技术, 2023, 42(8): 1-9. WANG X Y, LIANG Z W, GAO X, et al. Local trajectory planning of soccer robot based on improved DWA algorithm[J]. Foreign Electronic Measurement Technology, 2023, 42(8): 1-9. [47] 王凡, 李铁军, 刘今越, 等. 基于BIM的建筑机器人自主路径规划及避障研究[J]. 计算机工程与应用, 2020, 56(17): 224-230. WANG F, LI T J, LIU J Y, et al. Research on autonomous path planning and obstacle avoidance of building robot based on BIM[J]. Computer Engineering and Applications, 2020, 56(17): 224-230. [48] ALDAO E, GONZáLEZ-DESANTOS L M, MICHINEL H, et al. UAV obstacle avoidance algorithm to navigate in dynamic building environments[J]. Drones, 2022, 6(1): 16. [49] 刘子毅, 李铁军, 孙晨昭, 等. 基于BIM的建筑机器人自主导航策略优化研究[J]. 计算机工程与应用, 2022, 58(15): 302-308. LIU Z Y, LI T J, SUN C Z, et al. Research on optimization of autonomous navigation strategy of construction robot based on BIM[J]. Computer Engineering and Applications, 2022, 58(15): 302-308. [50] 谷万, 徐振, 郭帅. 基于A*和改进动态窗口法的建筑移动机器人路径规划[J]. 工业控制计算机, 2022, 35(8): 87-90. GU F, XU Z, GUO S. Path planning of construction mobile robot based on A* and improved dynamic window approach[J]. Industrial Control Computer, 2022, 35(8): 87-90. [51] 闫皎洁, 张锲石, 胡希平. 基于强化学习的路径规划技术综述[J]. 计算机工程, 2021, 47(10): 16-25. YAN J J, ZHANG Q S, HU X P. Review of path planning techniques based on reinforcement learning[J]. Computer Engineering, 2021, 47(10): 16-25. [52] 朱洁. 基于深度强化学习的移动机器人路径规划研究[D]. 临沂: 临沂大学, 2023. ZHU J. Research on path planning for mobile robots based on deep reinforcement learning[D]. Linyi: Linyi University,2023. [53] 陈坚. 基于机器学习的网联无人机通信优化研究[D]. 长春: 吉林大学, 2022. CHEN J. Research on communication optimization of cellular-connected UAV based on machine learning[D]. Changchun: Jilin University, 2022. [54] 王科银, 石振, 杨正才, 等. 改进强化学习算法应用于移动机器人路径规划[J]. 计算机工程与应用, 2021, 57(18): 270-274. WANG K Y, SHI Z, YANG Z C, et al. Path planning for mobile robot using improved reinforcement learning algorithm[J]. Computer Engineering and Applications, 2021, 57(18): 270-274. [55] 陈起源. 基于强化学习的变电站巡检机器人路径规划算法[D]. 西安: 西安建筑科技大学, 2022. CHEN Q Y. Path planning algorithm for substation inspection robot based on reinforcement learning[D]. Xi’an: Xi’an University of Architecture and Technology, 2022. [56] 罗洁, 王中训, 潘康路, 等. 基于改进人工势场法的无人车路径规划算法[J]. 电子设计工程, 2022, 30(17): 90-94. LUO J, WANG Z X, PAN K L, et al. Unmanned vehicle path planning algorithm based on improved artificial potential field method[J]. Electronic Design Engineering, 2022, 30(17): 90-94. [57] ALI N, KAMARUDIN K, BAKAR M A A, et al. 2D LiDAR based reinforcement learning for multi-target path planning in unknown environment[J]. IEEE Access, 2023, 11: 35541-35555. [58] 问泽藤. 基于深度强化学习的移动机器人自主路径规划算法研究[D]. 秦皇岛: 燕山大学, 2022. WEN Z T. Research on autonomous path planning algorithm of mobile robots based on deep reinforcement learning[D]. Qinhuangdao: Yanshan University, 2022. [59] 杨思明, 单征, 曹江, 等. 基于模型的强化学习在无人机路径规划中的应用[J]. 计算机工程, 2022, 48(12): 255-260. YANG S M, SHAN Z, CAO J, et al. Application of model-based reinforcement learning in path planning of unmanned aerial vehicle[J]. Computer Engineering, 2022, 48(12): 255-260. [60] 李永迪, 李彩虹, 张耀玉, 等. 基于改进SAC算法的移动机器人路径规划[J]. 计算机应用, 2023, 43(2): 654-660. LI Y D, LI C H, ZHANG Y Y, et al. Mobile robot path planning based on improved SAC algorithm[J]. Journal of Computer Applications, 2023, 43(2): 654-660. [61] WU R, GU F, LIU H, et al. UAV path planning based on multicritic-delayed deep deterministic policy gradient[J]. Wireless Communications and Mobile Computing, 2022. DOI: 10.1155/2022/9017079. [62] 余久方, 尧海昌.基于改进融合深度强化学习的机器人路径规划[J]. 组合机床与自动化加工技术, 2023(5): 19-22. YU J F, YAO H C. Robot path planning based on improved fusion deep reinforcement learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(5): 19-22. [63] GU Y, ZHU Z, LV J, et al. DM-DQN: dueling munchausen deep Q network for robot path planning[J]. Complex & Intelligent Systems, 2023, 9(4): 4287-4300. [64] LI J, WANG X, TANG S, et al. Unsupervised reinforcement learning of transferable meta-skills for embodied navigation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12123-12132. [65] ZHANG W, HE C, WANG T. Multi-task decomposition architecture based deep reinforcement learning for obstacle avoidance[C]//Proceedings of the 2020 Chinese Automation Congress, 2020: 2735-2740. [66] TAI L, LIU M. Towards cognitive exploration through deep reinforcement learning for mobile robots[J]. arXiv:1610. 01733, 2016. [67] 朱少凯, 孟庆浩, 金晟, 等. 基于深度强化学习的室内视觉局部路径规划[J]. 智能系统学报, 2022, 17(5): 908-918. ZHU S K, MENG Q H, JIN S, et al. Indoor visual local path planning based on deep reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2022, 17(5): 908-918. [68] 任伟建, 王飞, 吕微. 分层模糊控制的移动机器人路径规划[J]. 科学技术与工程, 2010, 10(10): 2317-2321. REN W J, WANG F, LV W. The path planning of mobile robots based on hierarchical fuzzy systems[J]. Science Technology and Engineering, 2010, 10(10): 2317-2321. [69] 张俊溪, 米国际, 王鑫, 等. 基于进化算法和模糊控制的机器人路径规划[J]. 计算机技术与发展, 2018, 28(6): 49-52. ZHANG J X, MI G J, WANG X, et al. Research on path planning of robot based on evolutionary algorithm and fuzzy control algorithm[J]. Computer Technology and Development, 2018, 28(6): 49-52. [70] 郭娜, 李彩虹, 王迪, 等. 基于模糊控制的移动机器人局部路径规划[J]. 山东理工大学学报(自然科学版), 2020, 34(4): 24-29. GUO N, LI C H, WANG D, et al. Local path planning of mobile robot based on fuzzy control[J]. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(4): 24-29. [71] FU H, LIU X. A path planning method for mobile robots based on fuzzy firefly algorithms[J]. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 2021, 14(9): 3040-3045. [72] 石振新, 冯剑波, 王衍学. 基于MPC和模糊控制的智能汽车路径追踪研究[J]. 车辆与动力技术, 2022(2): 7-11. SHI Z X, FENG J B, WANG Y X. Research on intelligent vehicle path tracking based on MPC and fuzzy control[J]. Vehicle & Power Technology, 2022(2): 7-11. [73] 刘翰培, 王东署, 汪宇轩, 等. 移动机器人路径规划的模糊人工势场法研究[J]. 控制工程, 2022, 29(1): 33-38. LIU H P, WANG D S, WANG Y X, et al. Research of path planning for mobile robots based on fuzzy artificial potential field method[J]. Control Engineering of China, 2022, 29(1): 33-38. [74] 张九龙, 王晓峰, 芦磊, 等. 若干新型智能优化算法对比分析研究[J]. 计算机科学与探索, 2022, 16(1): 88-105. ZHANG J L, WANG X F, LU L, et al. Analysis and research of several new intelligent optimization algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 88-105. [75] 何世琼, 陈雨.一种改进的人工势场法路径规划算法[J]. 现代计算机, 2022, 28(15): 17-23. HE S Q, CHEN Y. An improved path planning algorithm for artificial potential field method[J]. Modern Computer, 2022, 28(15): 17-23. [76] 李丽娜, 郭永强, 张晓东, 等. 萤火虫算法结合人工势场法的机器人路径规划[J]. 计算机工程与应用, 2018, 54(20): 104-109. LI L N, GUO Y Q, ZHANG X D, et al. Path planning algorithm for robot based on firefly algorithm combined with artificial potential field method[J]. Computer Engineering and Applications, 2018, 54(20): 104-109. [77] 丁承君, 阎欣怡, 冯玉伯, 等. 基于APF的AGV局部路径规划改进算法研究[J]. 计算机工程与应用, 2022, 58(22): 305-312. DING C J, YAN X Y, FENG Y B, et al. Improved algorithm of AGV local path planning based on APF[J]. Computer Engineering and Applications, 2022, 58(22): 305-312. [78] 万晓凤, 胡伟, 郑博嘉, 等. 基于改进蚁群算法与Morphin算法的机器人路径规划方法[J]. 科技导报, 2015, 33(3): 84-89. WAN X F, HU W, ZHENG B J, et al. Robot path planning method based on improved ant colony algorithm and Morphin algorithm[J]. Science & Technology Review, 2015, 33(3): 84-89. [79] 陈丹凤, 雷昊, 刘俊朗, 等. 基于强化蚁群算法的机器人路径规划研究[J]. 兵器装备工程学报, 2023, 44(6): 239-245. CHEN D F, LEI H, LIU J L, et al. Research on robot path planning according to reinforcement learning based ant colony algorithm[J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 239-245. [80] BAKDI A, HENTOUT A, BOUTAMI H, et al. Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control[J]. Robotics and Autonomous Systems, 2017, 89: 95-109. [81] 王鹏凯, 梁中华, 杨阔, 等. 基于深度强化学习和动态窗口法的移动机器人路径规划[J]. 计算机与数字工程, 2021, 49(10): 2017-2022. WANG P K, LIANG Z H, YANG K, et al. Path planning for mobile robot based on deep reinforcement learning and dynamic window approach[J]. Computer & Digital Engineering, 2021, 49(10): 2017-2022. [82] XING X R, GUO J, LIANG Z G, et al. DDPG-based improved seeker optimization algorithm for robot path planning[C]//Proceedings of the 2022 2nd International Conference on Computer, Control and Robotics, 2022: 27-31. [83] LEE W C, LIM M C, CHOI H L. Extendable navigation network based reinforcement learning for indoor robot exploration[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, 2021: 11508-11514. [84] KIM P, PARK J, CHO Y K, et al. UAV-assisted autonomous mobile robot navigation for as-is 3D data collection and registration in cluttered environments[J]. Automation in Construction, 2019, 106: 102918. [85] CHANG S, SIU M F F, LI H. Development of a fuzzy logic controller for autonomous navigation of building inspection robots in unknown environments[J]. Journal of Computing in Civil Engineering, 2023, 37(4): 04023014. [86] XUE J, KONG X, WANG G, et al. Path planning algorithm in complex environment based on DDPG and MPC[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(1): 1817-1831. [87] CHOI J, LEE G, LEE C. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning[J]. Intelligent Service Robotics, 2021, 14: 663-677. [88] LEE M F R, YUSUF S H. Mobile robot navigation using deep reinforcement learning[J]. Processes, 2022, 10(12): 2748. [89] 程浩鹏, 朱涵, 杨高奇, 等. 深度强化学习及智能路径规划应用综述[J]. 现代计算机, 2022, 28(21): 1-10. CHENG H P, ZHU H, YANG G Q, et al. Review of deep reinforcement learning and its application in intelligent path planning algorithms[J]. Modern Computer, 2022, 28(21): 1-10. [90] 毛建旭, 贺振宇, 王耀南, 等. 电力巡检机器人路径规划技术及应用综述[J]. 控制与决策, 2023, 38(11): 3009-3024. MAO J X, HE Z Y, WANG Y N, et al. A review of research and applications on path planning technology for power inspection robots[J]. Control and Decision, 2023, 38(11): 3009-3024. |
[1] | 宋伟, 张杨豪. 构音障碍语音识别算法研究综述[J]. 计算机工程与应用, 2024, 60(11): 62-74. |
[2] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[3] | 李瑾晨, 李艳玲, 葛凤培, 林民. 面向法律领域的智能系统研究综述[J]. 计算机工程与应用, 2023, 59(7): 31-50. |
[4] | 孙书魁, 范菁, 李占稳, 曲金帅, 路佩东. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39. |
[5] | 李文静, 白静, 彭斌, 杨瞻源. 图卷积神经网络及其在图像识别领域的应用综述[J]. 计算机工程与应用, 2023, 59(22): 15-35. |
[6] | 顾剑, 钱育蓉, 王兰兰, 胡月, 陈嘉颖, 冷洪勇, 马梦楠. 人工智能在功能磁共振成像数据中的自闭症研究综述[J]. 计算机工程与应用, 2023, 59(22): 57-68. |
[7] | 王旭, 朱其新, 朱永红. 面向二维移动机器人的路径规划算法综述[J]. 计算机工程与应用, 2023, 59(20): 51-66. |
[8] | 吴斌, 张新, VIALOVA Varvara. 面向实际工况的AGV局部路径规划及跟踪研究[J]. 计算机工程与应用, 2023, 59(20): 295-305. |
[9] | 赵延玉, 赵晓永, 王磊, 王宁宁. 可解释人工智能研究综述[J]. 计算机工程与应用, 2023, 59(14): 1-14. |
[10] | 祁泽政, 徐银霞. 改进YOLOv5s算法的安全帽佩戴检测研究[J]. 计算机工程与应用, 2023, 59(14): 176-183. |
[11] | 赵立阳, 常天庆, 褚凯轩, 郭理彬, 张雷. 完全合作类多智能体深度强化学习综述[J]. 计算机工程与应用, 2023, 59(12): 14-27. |
[12] | 王正安, 徐贞顺, 林令德. 新冠肺炎疫情传播预测方法综述[J]. 计算机工程与应用, 2023, 59(12): 49-61. |
[13] | 梁天恺, 苏新铎, 黄宇恒, 徐天适, 张华俊, 曾碧. 智能化表格识别技术综述[J]. 计算机工程与应用, 2023, 59(12): 62-76. |
[14] | 张启阳, 陈希亮, 曹雷, 赖俊. 基于好奇心机制改进的策略优化算法[J]. 计算机工程与应用, 2023, 59(11): 63-70. |
[15] | 伍洲, 张洪瑞, 张海军, 宋晴. 近邻场优化算法研究与应用综述[J]. 计算机工程与应用, 2022, 58(9): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||