计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (14): 1-14.DOI: 10.3778/j.issn.1002-8331.2208-0322
赵延玉,赵晓永,王磊,王宁宁
出版日期:
2023-07-15
发布日期:
2023-07-15
ZHAO Yanyu, ZHAO Xiaoyong, WANG Lei, WANG Ningning
Online:
2023-07-15
Published:
2023-07-15
摘要: 随着机器学习和深度学习的发展,人工智能技术已经逐渐应用在各个领域。然而采用人工智能的最大缺陷之一就是它无法解释预测的依据。模型的黑盒性质使得在医疗、金融和自动驾驶等关键任务应用场景中人类还无法真正信任模型,从而限制了这些领域中人工智能的落地应用。推动可解释人工智能(explainable artificial intelligence,XAI)的发展成为实现关键任务应用落地的重要问题。目前,国内外相关领域仍缺少有关可解释人工智能的研究综述,也缺乏对因果解释方法的关注以及对可解释性方法评估的研究。从解释方法的特点出发,将主要可解释性方法分为三类:独立于模型的方法、依赖于模型的方法和因果解释方法,分别进行总结分析,对解释方法的评估进行总结,列举出可解释人工智能的应用,讨论当前可解释性存在的问题并进行展望。
赵延玉, 赵晓永, 王磊, 王宁宁. 可解释人工智能研究综述[J]. 计算机工程与应用, 2023, 59(14): 1-14.
ZHAO Yanyu, ZHAO Xiaoyong, WANG Lei, WANG Ningning. Review of Explainable Artificial Intelligence[J]. Computer Engineering and Applications, 2023, 59(14): 1-14.
[1] ADADI A,BERRADA M.Peeking inside the black-box:a survey on explainable artificial intelligence(XAI)[J].IEEE Access,2018,6:52138-52160. [2] ZHANG Q,ZHU S C.Visual interpretability for deep learning:a survey[J].Frontiers of Information Technology & Electronic Engineering,2018,19(1):27-39. [3] ZHANG Y,TI?O P,LEONARDIS A,et al.A survey on neural network interpretability[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2021,5(5):726-742. [4] 苏炯铭,刘鸿福,项凤涛,等.深度神经网络解释方法综述[J].计算机工程,2020,46(9):1-15. SU J M,LIU H F,XIANG F T,et al.Survey of interpretation methods for deep neural networks[J].Computer Engineering,2020,46(9):1-15. [5] 化盈盈,张岱墀,葛仕明.深度学习模型可解释性的研究进展[J].信息安全学报,2020,5(3):1-12. HUA Y Y,ZHANG D C,GE S M.Research progress in the interpretability of deep learning models[J].Journal of Cyber Security,2020,5(3):1-12. [6] 曾春艳,严康,王志锋,等.深度学习模型可解释性研究综述[J].计算机工程与应用,2021,57(8):1-9. ZENG C Y,YAN K,WANG Z F,et al.Survey of interpretability research on deep learning models[J].Computer Engineering and Applications,2021,57(8):1-9. [7] SPEITH T.A review of taxonomies of explainable artificial intelligence(XAI) methods[C]//2022 ACM Conference on Fairness,Accountability,and Transparency,2022:2239-2250. [8] MINH D,WANG H X,LI Y F,et al.Explainable artificial intelligence:a comprehensive review[J].Artificial Intelligence Review,2022,55(5):3503-3568. [9] 李瑶,左兴权,王春露,等.人工智能可解释性评估研究综述[J].导航定位与授时,2022,9(6):13-24. LI Y,ZUO X Q,WANG C L,et al.Research progress of artificial intelligence interpretability evaluation[J].Navigation Positioning and Timing,2022,9(6):13-24. [10] ISLAM S R,EBERLE W,GHAFOOR S K.Towards quantification of explainability in explainable artificial intelligence methods[C]//The Thirty-third International Flairs Conference,2020. [11] CARVALHO D V,PEREIRA E M,CARDOSO J S.Machine learning interpretability:a survey on methods and metrics[J].Electronics,2019,8(8):832. [12] MOHSENI S,BLOCK J E,RAGAN E.Quantitative evaluation of machine learning explanations:a human-grounded benchmark[C]//26th International Conference on Intelligent User Interfaces,2021:22-31. [13] GUNNING D,AHA D W.DARPA’s explainable artificial intelligence program[J].AI Magazine,2019,40(2):44-58. [14] 可解释、可通用的下一代人工智能方法重大研究计划2022年度项目指南[J].模式识别与人工智能,2022,35(5):481-482. Major research program on interpretable and generalizable next-generation artificial intelligence methods 2022 annual project guide[J].Pattern Recognition and Artificial Intelligence,2022,35(5):481-482. [15] GUNNING D,STEFIK M,CHOI J,et al.XAI—explainable artificial intelligence[J].Science Robotics,2019,4(37):eaay7120. [16] DAS S,AGARWAL N,VENUGOPAL D,et al.Taxonomy and survey of interpretable machine learning method[C]//2020 IEEE Symposium Series on Computational Intelligence(SSCI),2020:670-677. [17] DUVAL A.Explainable artificial intelligence (XAI)[R].The University of Warwick.Mathematics Institute,2019:1-53. [18] TAN S,CARUANA R,HOOKER G,et al.Learning global additive explanations for neural nets using model distillation[J].arXiv.1801.08640,2018. [19] MOLNAR C.Interpretable machine learning[Z].2020. [20] FAN F L,XIONG J,LI M,et al.On interpretability of artificial neural networks:a survey[J].IEEE Transactions on Radiation and Plasma Medical Sciences,2021,5(6):741-760. [21] DAS A,RAD P.Opportunities and challenges in explainable artificial intelligence(XAI):a survey[J].arXiv:2006. 11371,2020. [22] RIBEIRO M T,SINGH S,GUESTRIN C.Model-agnostic interpretability of machine learning[J].arXiv:1606.05386,2016. [23] FRIEDMAN J H.Greedy function approximation:a gradient boosting machine[J].Annals of Statistics,2001:1189-1232. [24] GOLDSTEIN A,KAPELNER A,BLEICH J,et al.Peeking inside the black box:visualizing statistical learning with plots of individual conditional expectation[J].Journal of Computational and Graphical Statistics,2015,24(1):44-65. [25] GALKIN F,ALIPER A,PUTIN E,et al.Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects[J].BioRxiv,2018:507780. [26] FRIEDMAN J H,POPESCU B E.Predictive learning via rule ensembles[J].The Annals of Applied Statistics,2008,2(3):916-954. [27] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32. [28] FISHER A,RUDIN C,DOMINICI F.All Models are wrong,but many are useful:learning a variable’s importance by studying an entire class of prediction models simultaneously[J].J Mach Learn Res,2019,20(177):1-81. [29] SUNDARARAJAN M,NAJMI A.The many shapley values for model explanation[C]//International Conference on Machine Learning,2020:9269-9278. [30] YUAN X,HE P,ZHU Q,et al.Adversarial examples:attacks and defenses for deep learning[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(9):2805-2824. [31] 孔祥维,杨浩.一种基于深度神经网络模型可解释性的对抗样本防御方法:CN112364885A[P].2021. KONG X W,YANG H.An adversarial sample defense method based on deep neural network model interpretability:CN112364885A[P].2021. [32] 董胤蓬,苏航,朱军.面向对抗样本的深度神经网络可解释性分析[J].自动化学报,2022,48(1):75-86. DONG Y P,SU H,ZHU J.Interpretability analysis of deep neural networks with adversarial examples[J].Acta Automatica Sinica,2022,48(1):75-86. [33] NAUTA M,JUTTE A,PROVOOST J,et al.This looks like that,because... explaining prototypes for interpretable image recognition[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer,2021:441-456. [34] KOH P W,LIANG P.Understanding black-box predictions via influence functions[C]//International Conference on Machine Learning,2017:1885-1894. [35] GUO H,RAJANI N F,HASE P,et al.Fastif:scalable influence functions for efficient model interpretation and debugging[J].arXiv:2012.15781,2020. [36] RIBEIRO M T,SINGH S,GUESTRIN C."Why should I trust you?" Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:1135-1144. [37] ZHANG Y,SONG K,SUN Y,et al."Why should you trust my explanation?" Understanding uncertainty in LIME explanations[J].arXiv:1904.12991,2019. [38] RIBEIRO M T,SINGH S,GUESTRIN C.Anchors:high-precision model-agnostic explanations[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [39] ZHOU Z,HOOKER G,WANG F.S-lime:stabilized-lime for model explanation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,2021:2429-2438. [40] SHANKARANARAYANA S M,RUNJE D.ALIME:autoencoder based approach for local interpretability[C]//International Conference on Intelligent Data Engineering and Automated Learning.Cham:Springer,2019:454-463. [41] ELSHAWI R,SHERIF Y,AL-MALLAH M,et al.ILIME:local and global interpretable model-agnostic explainer of black-box decision[C]//European Conference on Advances in Databases and Information Systems.Cham:Springer,2019:53-68. [42] HAUFE S,MEINECKE F,G?RGEN K,et al.On the interpretation of weight vectors of linear models in multivariate neuroimaging[J].Neuroimage,2014,87:96-110. [43] BERTSIMAS D,KING A.Logistic regression:from art to science[J].Statistical Science,2017,32(3):367-384. [44] QUINLAN J R.Learning decision tree classifiers[J].ACM Computing Surveys,1996,28(1):71-72. [45] WEBB G I,KEOGH E,MIIKKULAINEN R.Na?ve Bayes[J].Encyclopedia of Machine Learning,2010,15:713-714. [46] SHRIKUMAR A,GREENSIDE P,KUNDAJE A.Learning important features through propagating activation differences[C]//International Conference on Machine Learning,2017:3145-3153. [47] BACH S,BINDER A,MONTAVON G,et al.On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J].PloS One,2015,10(7):e0130140. [48] WANG Z,HUANG X,YANG J,et al.Universal adversarial perturbation generated by attacking layer-wise relevance propagation[C]//2020 IEEE 10th International Conference on Intelligent Systems(IS),2020:431-436. [49] MONTAVON G,BINDER A,LAPUSCHKIN S,et al.Layer-wise relevance propagation:an overview[J].Explainable AI:Interpreting,Explaining and Visualizing Deep Learning,2019:193-209. [50] SIMONYAN K,VEDALDI A,ZISSERMAN A.Deep inside convolutional networks:visualising image classification models and saliency maps[J].arXiv:1312.6034,2013. [51] ERHAN D,BENGIO Y,COURVILLE A,et al.Visualizing higher-layer features of a deep network[Z].University of Montreal,2009. [52] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision.Cham:Springer,2014:818-833. [53] SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:the all convolutional net[J].arXiv:1412.6806,2014. [54] SMILKOV D,THORAT N,KIM B,et al.Smoothgrad:removing noise by adding noise[J].arXiv:1706.03825,2017. [55] SUNDARARAJAN M,TALY A,YAN Q.Axiomatic attribution for deep networks[C]//International Conference on Machine Learning,2017:3319-3328. [56] ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2921-2929. [57] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:618-626. [58] CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-CAM++:generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV),2018:839-847. [59] WANG H,WANG Z,DU M,et al.Score-CAM:score-weighted visual explanations for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:24-25. [60] PEARL J.Theoretical impediments to machine learning with seven sparks from the causal revolution[J].arXiv:1801.04016,2018. [61] WACHTER S,MITTELSTADT B,RUSSELL C.Counterfactual explanations without opening the black box:automated decisions and the GDPR[J].arXiv:1711.00399,2017. [62] GRATH R M,COSTABELLO L,VAN C L,et al.Interpretable credit application predictions with counterfactual explanations[J].arXiv:1811.05245,2018. [63] MOTHILAL R K,SHARMA A,TAN C.Explaining machine learning classifiers through diverse counterfactual explanations[C]//Proceedings of the 2020 Conference on Fairness,Accountability,and Transparency,2020:607-617. [64] RUSSELL C.Efficient search for diverse coherent explanations[C]//Proceedings of the Conference on Fairness,Accountability,and Transparency,2019:20-28. [65] LIU S,KAILKHURA B,LOVELAND D,et al.Generative counterfactual introspection for explainable deep learning[C]//2019 IEEE Global Conference on Signal and Information Processing(GlobalSIP),2019:1-5. [66] LOOVEREN A V,KLAISE J.Interpretable counterfactual explanations guided by prototypes[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer,2021:650-665. [67] DUONG T D,LI Q,XU G.Prototype-based counterfactual explanation for causal classification[J].arXiv:2105. 00703,2021. [68] MAHAJAN D,TAN C,SHARMA A.Preserving causal constraints in counterfactual explanations for machine learning classifiers[J].arXiv:1912.03277,2019. [69] DOSHI-VELEZ F,KIM B.Considerations for evaluation and generalization in interpretable machine learning[M]//Explainable and interpretable models in computer vision and machine learning.Cham:Springer,2018:3-17. [70] MOLNAR C,CASALICCHIO G,BISCHL B.Quantifying interpretability of arbitrary machine learning models through functional decomposition[J].Ulmer Informatik-Berichte,2019:41. [71] YEH C K,HSIEH C Y,SUGGALA A,et al.On the (in) fidelity and sensitivity of explanations[C]//Advances in Neural Information Processing Systems,2019. [72] SRINIVAS S,FLEURET F.Full-gradient representation for neural network visualization[C]//Advances in Neural Information Processing Systems,2019. [73] MORAFFAH R,KARAMI M,GUO R,et al.Causal interpretability for machine learning-problems,methods and evaluation[J].ACM SIGKDD Explorations Newsletter,2020,22(1):18-33. [74] ZHANG Y,WENG Y,LUND J.Applications of explainable artificial intelligence in diagnosis and surgery[J].Diagnostics,2022,12(2):237. [75] EL-SAPPAGH S,ALONSO J M,ISLAM S M,et al.A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease[J].Scientific Reports,2021,11(1):1-26. [76] LAMY J B,SEKAR B,GUEZENNEC G,et al.Explainable artificial intelligence for breast cancer:a visual case-based reasoning approach[J].Artificial Intelligence in Medicine,2019,94:42-53. [77] LIN K,GAO Y.Model interpretability of financial fraud detection by group SHAP[J].Expert Systems with Applications,2022,210:118354. [78] WANG D,LIN J,CUI P,et al.A semi-supervised graph attentive network for financial fraud detection[C]//2019 IEEE International Conference on Data Mining(ICDM),2019:598-607. [79] KIM J,CANNY J.Interpretable learning for self-driving cars by visualizing causal attention[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2942-2950. [80] SOARES E,ANGELOV P,FILEV D,et al.Explainable density-based approach for self-driving actions classification[C]//2019 18th IEEE International Conference on Machine Learning and Applications(ICMLA),2019:469-474. [81] AHMED F,ERMAN J,GE Z,et al.Detecting and localizing end-to-end performance degradation for cellular data services based on TCP loss ratio and round trip time[J].IEEE/ACM Transactions on Networking,2017,25(6):3709-3722. [82] LI Z,ZHAO N,LI M,et al.Actionable and interpretable fault localization for recurring failures in online service systems[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,2022:996-1008. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[4] | 张姁, 杨学志, 刘雪南, 方帅. 视频脉搏特征的非接触房颤检测[J]. 计算机工程与应用, 2023, 59(8): 331-340. |
[5] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[6] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[7] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[8] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[9] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[10] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[11] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[12] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[13] | 李瑾晨, 李艳玲, 葛凤培, 林民. 面向法律领域的智能系统研究综述[J]. 计算机工程与应用, 2023, 59(7): 31-50. |
[14] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[15] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 587
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 936
|
|
|||||||||||||||||||||||||||||||||||||||||||||