计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (14): 15-29.DOI: 10.3778/j.issn.1002-8331.2301-0081
王琳毅,白静,李文静,蒋金哲
出版日期:
2023-07-15
发布日期:
2023-07-15
WANG Linyi, BAI Jing, LI Wenjing, JIANG Jinzhe
Online:
2023-07-15
Published:
2023-07-15
摘要: YOLO算法是目标检测中研究的热点方向之一。近几年,随着YOLO系列算法及其改进模型的不断提出,使其在目标检测领域取得了优异的成绩,被广泛应用于现实中各个领域。针对YOLO系列目标检测算法,整理了目标检测典型数据集及评价指标;回顾了YOLO整体框架以及YOLOv1~YOLOv7目标检测算法的发展历程;总结了在输入、特征提取和预测这三个阶段下的数据增强、轻量化网络构建和IOU损失优化等八个改进方向的模型及性能;介绍了YOLO算法应用领域;结合目标检测目前存在的实际问题,总结并展望了YOLO算法的发展方向。
王琳毅, 白静, 李文静, 蒋金哲. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG Linyi, BAI Jing, LI Wenjing, JIANG Jinzhe. Research Progress of YOLO Series Target Detection Algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [2] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [3] WANG C Y,BOCHKOVSKIY A,LIAO H.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2023:7464-7475. [4] 叶赵兵,段先华,赵楚.改进YOLOv3-SPP水下目标检测研究[J].计算机工程与应用,2023,59(6):231-240. YE Z B,DUAN X H,ZHAO C.Research on underwater target detection by improved YOLOv3-SPP[J].Computer Engineering and Applications,2023,59(6):231-240. [5] 王建波,武友新.改进YOLOv4-tiny的安全帽佩戴检测算法[J].计算机工程与应用,2023,59(4):183-190. WANG J B,WU Y X.Helmet wearing detection algorithm of improved YOLOv4-tiny[J].Computer Engineering and Applications,2023,59(4):183-190. [6] TAN Y,CAI R,LI J,et al.Automatic detection of sewer defects based on improved you only look once algorithm[J].Automation in Construction,2021,131(6):103912-103928. [7] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [8] EVERINGHAM M,ESLAMI S M A,VAN GOOL L,et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision,2015,111(1):98-136. [9] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [10] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [11] KUZNETSOVA A,ROM H,ALLDRIN N,et al.The open images dataset v4[J].International Journal of Computer Vision,2020,128(7):1956-1981. [12] XIA G S,BAI X,DING J,et al.Dota:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3974-3983. [13] ZAIDI S,ANSARI M S,ASLAM A,et al.A survey of modern deep learning based object detection models[J].Digital Signal Processing,2022,126:103514-103530. [14] ZOU Z X,SHI Z W,GUO Y H,et al.Object detection in 20 years:a survey[J].Proceedings of the IEEE,2023,111(3):257-276. [15] REDMON J,FARHADI A.Yolo9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [16] NEUBECK A,GOOL L.Efficient non-maximum sup-pression[C]//International Conference on Pattern Recog-nition,2006:850-855. [17] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [18] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [19] JOCHER G.Yolov5[EB/OL].[2023-03-20].https://github.com/ultralytics/yolov5. [20] LI C Y,LI L L,JIANG H L,et al.Yolov6:a single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [21] 王鑫鹏,王晓强,林浩,等.深度学习典型目标检测算法的改进综述[J].计算机工程与应用,2022,58(6):42-57. WANG X P,WANG X Q,LIN H,et al.Review on improvement of typical object detection algorithms in deep learning[J].Computer Engineering and Applications,2022,58(6):42-57. [22] 冷坤,秦伦明,王悉.基于CA-ASFF-YOLOv4的交通标志识别研究[J/OL].计算机工程与应用(2022-12-09)[2022-12-30].https://kns.cnki.net/kcms/detail//11.2127.TP.20221208. 1745.004.html. LENG K,QIN L M,WANG X.Research on traffic sign recognition based on CA-ASFF-YOLOv4[J/OL].Computer Engineering and Applications(2022-12-09)[2022-12-30].https://kns.cnki.net/kcms/detail//11.2127.TP.20221208.1745. 004.html. [23] 张欣怡,张飞,郝斌,等.基于改进YOLOv5的口罩佩戴检测算法[J/OL].计算机工程(2022-12-09)[2022-12-30].https://doi.org/10.19678/j.issn.1000-3428.0065701. ZHANG X Y,ZHANG F,HAO B,et al.Improved YOLOv5s in mask wearing detection algorithm[J/OL].Computer Engineering(2022-12-09)[2022-12-30].https://doi.org/10.19678/j.issn.1000-3428.0065701. [24] 郭明镇,汪威,申红婷,等.改进型YOLOv4-tiny的轻量级目标检测算法[J/OL].计算机工程与应用(2022-11-26)[2022-12-30].https://kns.cnki.net/kcms/detail/11.2127.TP. 20221125.1132.016.html. GUO M Z,WANG W,SHEN H T,et al.Improved lightweight target detection algorithm for YOLOv4-tiny[J/OL].Computer Engineering and Applications(2022-11-26)[2022-12-30].https://kns.cnki.net/kcms/detail/11.2127.TP. 20221125.1132.016.html. [25] ZHANG D Y,CHEN X Y,REN Y M,et al.Smart-YOLO:a light-weight real-time object detection network[J].Journal of Physics:Conference Series,2021,1757(1):012096. [26] 何自芬,陈光晨,陈俊松,等.多尺度特征融合轻量化夜间红外行人实时检测[J].中国激光,2022,49(17):130-139. HE Z F,CHEN G C,CHEN J S,et al.Multi-scale feature fusion lightweight real-time infrared pedestrain detection at night[J].Chinese Journal of Lasers,2022,49(17):130-139. [27] WU T H,WANG T W,LIU Y Q.Real-time vehicle and distance detection based on improved YOLOv5 network[C]//2021 IEEE World Symposium on Artificial Intelligence(WSAI),2021:24-28. [28] 赵凤,李永恒,李晶,等.基于改进YOLOv4-tiny的轻量化室内人员目标检测算法[J].电子与信息学报,2022,44(11):3815-3824. ZHAO F,LI Y H,LI J,et al.Lightweight indoor personnel detection algorithm based on improved YOLOv4-tiny[J].Journal of Electronics & Information Technology,2022,44(11):3815-3824. [29] YAN F,XU Y.Improved target detection algorithm based on YOLO[C]//2021 IEEE International Conference on Robotics,Control and Automation Engineering(RCAE),2021:21-25. [30] LI J C,WANG H Z,XU Y,et al.Road object detection of YOLO algorithm with attention mechanism[J].Frontiers in Signal Processing,2021,5(1):9-16. [31] MA Y J,ZHANG S H.Feature selection module for CNN based object detector[J].IEEE Access,2021,9:69456-69466. [32] JU M R,LUO J N,WANG Z B,et al.Adaptive fea-ture fusion with attention mechanism for multi-scale target detection[J].Neural Computing and Applications,2020,33(7):2769-2781. [33] 陈思雨,付章杰.融合高效注意力的多尺度输电线路部件检测[J/OL].计算机工程与应用(2023-01-03)[2023-01-18].https://kns.cnki.net/kcms/detail//11.2127.TP.20230103.1221. 002.html. CHEN S Y,FU Z J,et al.Multi-scale transmission line component detection incorporating efficient attention[J/OL].Computer Engineering and Applications(2023-01-03) [2023-01-18].https://kns.cnki.net/kcms/detail//11.2127.TP. 20230103.1221.002.html. [34] HUANG Z C,WANG J L,FU X S,et al.DC-SPP-YOLO:dense connection and spatial pyramid pooling based YOLO for object detection[J].Information Sciences,2020,522:241-258. [35] 钱伍,王国中,李国平.改进YOLOv5的交通灯实时检测鲁棒算法[J].计算机科学与探索,2022,16(1):231-241. QIAN W,WANG G Z,LI G P.Improved YOLOv5 traffic light real-time detection robust algorithm[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):231-241. [36] 王志欣,万绍俊,马晓莹.改进锚点框与融合多尺度特征的光学遥感目标检测[J].无线电工程,2021,51(9):915-920. WANG Z X,WAN S J,MA X Y.Optical remote sensing target detection based on improved anchor frames and fused multi-scale features[J].Radio Engineering,2021,51(9):915-920. [37] 杨锦辉,李鸿,杜芸彦,等.基于改进YOLOv5s的轻量化目标检测算法[J].电光与控制,2023,30(2):24-30. YANG J H,LI H,DU Y Y,et al.Lightweight object detection algorithm based on improved YOLOv5s[J].Electronics Optics & Control,2023,30(2):24-30. [38] YANG Y H,LI B.Water area object detection based on YOLO-fusion network[J].International Core Journal of Engineering,2021,7(5):100-107. [39] 宋艳艳,谭励,马子豪,等.改进YOLOV3算法的视频目标检测[J].计算机科学与探索,2021,15(1):163-172. SONG Y Y,TAN L,MA Z H,et al.Video target detection based on improved YOLOV3 algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):163-172. [40] ZHANG Z,LU X,CAO G,et al.ViT-YOLO:transformer based YOLO for object detection[C]//2021 IEEE International Conference on Computer Vision(ICCV),2021:2799-2808. [41] ZHU X K,LYU S C,WANG X,et al.TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//2021 IEEE/CVF International Conference on Computer Vison Workshops(ICCVW),2021:2778-2788. [42] 汤寓麟,李厚朴,张卫东,等.侧扫声纳检测沉船目标的轻量化DETR-YOLO法[J].系统工程与电子技术,2022,44(8):2427-2436. TANG Y L,LI H P,ZHANG W D,et al.Lightweight DETR-YOLO method for detecting shipwreck target in side-scan sonar[J].Systems Engineering and Electronics,2022,44(8):2427-2436. [43] AKSOY T,HALICI U.Analysis of visual reasoning on one-stage object detection[J].arXiv:2202.13115,2022. [44] OUYANG H.DEYO:DETR with YOLO for step-by-step object detection[J].arXiv:2211.06588,2022. [45] JU M R,LUO H B,WANG Z B,et al.The application of improved YOLOv3 in multi-scale target detection[J].Applied Sciences,2019,9(18):3775-3788. [46] 姜文志,李炳臻,顾佼佼,等.基于改进YOLO V3的舰船目标检测算法[J].电光与控制,2021,28(6):52-56. JIANG W Z,LI B Z,GU J J,et al.A ship target detection algorithm based on improved YOLO V3[J].Electronics Optics & Control,2021,28(6):52-56. [47] YING Z P,LIN Z T,WU Z Y,et al.A modified-YOLOv5s model for detection of wire braided hose defects[J].Measurement,2022,190:110683-110693. [48] LIU T,PANG B,AI S M,et al.Study on visual detection algorithm of sea surface targets based on improved YOLOv3[J].Sensors,2020,20(24):7263-7276. [49] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS-improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569. [50] LIU S,HUANG D,WANG Y.Adaptive NMS:refining pedestrian detection in a crowd[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6459-6468. [51] BOLYA D,ZHOU C,XIAO F,et al.YOLACT:real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9157-9166. [52] ZHENG Z,WANG P,REN D,et al.Enhancing geo-metric factors in model learning and inference for object detection and instance segmentation[J].arXiv:2005.03572,2020. [53] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666. [54] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12993-13000. [55] ZHANG Y F,REN W,ZHANG Z,et al.Focal and efficient IOU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157. [56] GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[J].arXiv:2205.12740,2022. [57] 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25. XU D G,WANG L,LI F.Review of typical object detection algorithms for deep learning[J].Computer Engineering and Applications,2021,57(8):10-25. [58] 金雨芳,吴祥,董辉,等.基于改进YOLOv4的安全帽佩戴检测算法[J].计算机科学,2021,48(11):268-275. JIN Y F,WU X,DONG H,et al.Improved YOLOv4 algorithm for safety helmet wearing detection[J].Computer Science,2021,48(11):268-275. [59] 冯晨光,魏巍,陈灯,等.基于SlimYOLO的控制箱零件检测方法[J].电子测量技术,2022,45(17):120-126. FENG C G,WEI W,CHEN D,et al.Detection method of electrical cabinet parts based on SlimYOLO[J].Electronic Measurement Technology,2022,45(17):120-126. [60] 胡欣,周运强,肖剑,等.基于改进YOLOv5的螺纹钢表面缺陷检测[J/OL].图学学报(2023-01-06)[2023-03-17].https://kns.cnki.net/kcms/detail//10.1034.T.20230106.1212.003.html. HU X,ZHOU Y Q,XIAO J,et al.Surface defect detection of threaded steel based on improved YOLOv5[J/OL].Journal of Graphics(2023-01-06)[2023-03-17].https://kns.cnki.net/kcms/detail//10.1034.T.20230106.1212.003.html. [61] 邓杰,万旺根.基于改进YOLOv3的密集行人检测[J].电子测量技术,2021,44(11):90-95. DENG J,WAN W G.Dense pedestrian detection based on improved YOLOv3[J].Electronic Measurement Technology,2021,44(11):90-95. [62] 常青,韩文,王清华,等.改进YOLO轻量化网络的行人检测算法[J].光学技术,2022,48(1):80-85. CHANG Q,HAN W,WANG Q H,et al.Pedestrian detection algorithm based on improved YOLO lightweight network[J].Optical Technique,2022,48(1):80-85. [63] 向南,王璐,贾崇柳,等.改进YOLO的遮挡行人检测仿真[J].系统仿真学报,2023,35(2):286-299. XIANG N,WANG L,JIA C L,et al.Simulation of occluded pedestrian detection based on improved YOLO[J].Journal of System Simulation,2023,35(2):286-299. [64] 张帆,郭思媛,任方涛,等.基于改进YOLO v3的玉米叶片气孔自动识别与测量方法[J].农业机械学报,2023,54(2):216-222. ZHANG F,GUO S Y,REN F T,et al.Automatic identification and measurement of maize leaves stomata based on YOLO v3[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):216-222. [65] 郝鹏飞,刘立群,顾任远.YOLO-RD-Apple果园异源图像遮挡果实检测模型[J/OL].图学学报(2023-02-01)[2023-03-17].http://kns.cnki.net/kcms/detail/10.1034.T.20230201. 1105.001.html. HAO P F,LIU L Q,GU R Y.YOLO-RD-Apple orchard heterogenous image obscured fruit detection model[J/OL].Journal of Graphics(2023-02-01)[2023-03-17].http://kns.cnki.net/kcms/detail/10.1034.T.20230201.1105.001.html. [66] 冯娟,梁翔宇,曾立华,等.基于改进YOLO v4的单环刺螠洞口识别方法[J].农业机械学报,2023,54(2):265-274. FENG J,LIANG X Y,ZENG L H,et al.Urechis unicinctus burrows recognition method based on improved YOLO v4[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):265-274. [67] ZHUANG Z,LIU G,DING W,et al.Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation[J].Computerized Medical Imaging and Graphics,2020,82:101732-101743. [68] SHARIF M,AMIN J,SIDDIQA A,et al.Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features[J].IEEE Access,2020,8:167448-167459. [69] 王榆锋,李大海.改进YOLO框架的血细胞检测算法[J].计算机工程与应用,2022,58(12):191-198. WANG Y F,LI D H.Improved YOLO framework blood cell detection algorithm[J].Computer Engineering and Applications,2022,58(12):191-198. [70] 陈静,陈静波,孟瑜,等.尺度和密度约束下基于YOLOv3的风电塔架遥感检测方法[J].自然资源遥感,2021,33(3):54-62. CHEN J,CHEN J B,MENG Y,et al.Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints[J].Remote Sensing for Natural Resources,2021,33(3):54-62. [71] 肖振久,杨玥莹,孔祥旭.基于改进YOLOv4的遥感图像目标检测方法[J].激光与光电子学进展,2023,60(6):407-415. XIAO Z J,YANG Y Y,KONG X X.Object detection method based on improved YOLOv4 network for remote sensing images[J].Laser & Optoelectronics Progress,2023,60(6):407-415. [72] 闫钧华,张琨,施天俊,等.融合多层级特征的遥感图像地面弱小目标检测[J].仪器仪表学报,2022,43(3):221-229. YAN J H,ZHANG K,SHI T J,et al.Multi-level feature fusion based dim small ground target detection in remote sensing images[J].Chinese Journal of Scientific Instrument,2022,43(3):221-229. [73] 邵延华,张铎,楚红雨,等.基于深度学习的YOLO目标检测综述[J].电子与信息学报,2022,44(10):3697-3708. SHAO Y H,ZHANG D,CHU H Y,et al.A review of YOLO object detection based on deep learning[J].Journal of Electronics & Information Technology,2022,44(10):3697-3708. [74] 李科岑,王晓强,林浩,等.深度学习中的单阶段小目标检测方法综述[J].计算机科学与探索,2022,16(1):41-58. LI K C,WANG X Q,LIN H,et al.Survey of one-stage small object detection methods in deep learning[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):41-58. [75] WANG Y,SHEN X,HU S X,et al.Self-supervised transformers for unsupervised object discovery using normalized cut[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:14523-14533. |
[1] | 蔡正奕, 赵杰煜, 朱峰. 融合图像特征的单阶段点云目标检测[J]. 计算机工程与应用, 2023, 59(9): 140-149. |
[2] | 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206. |
[3] | 李坤亚, 欧鸥, 刘广滨, 于泽峰, 李林. 改进YOLOv5的遥感图像目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 207-214. |
[4] | 黄磊, 杨媛, 杨成煜, 杨威, 李耀华. FS-YOLOv5:轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224. |
[5] | 李文举, 储王慧, 崔柳, 苏攀, 张干. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244. |
[6] | 张婷, 张兴忠, 王慧民, 杨罡, 王大伟. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336. |
[7] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[8] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[9] | 郭平秀, 李启南, 杨忠鹏. 一种图像增强及改进海洋生物图像检测算法[J]. 计算机工程与应用, 2023, 59(8): 208-216. |
[10] | 张朝阳, 张上, 王恒涛, 冉秀康. 多尺度下遥感小目标多头注意力检测[J]. 计算机工程与应用, 2023, 59(8): 227-238. |
[11] | 李阿标, 郭浩, 戚畅, 安居白. 复杂背景下遥感图像密集目标检测[J]. 计算机工程与应用, 2023, 59(8): 247-253. |
[12] | 刘翀豪, 潘理虎, 杨帆, 张睿. 改进YOLOv5的轻量化口罩检测算法[J]. 计算机工程与应用, 2023, 59(7): 232-241. |
[13] | 张红民, 庄旭, 郑敬添, 房晓冰. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249. |
[14] | 郑远攀, 许博阳, 王振宇. 改进的YOLOv5烟雾检测模型[J]. 计算机工程与应用, 2023, 59(7): 214-221. |
[15] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||