[1] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[2] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[3] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[4] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107. 08430, 2021.
[5] CHEN X, KUNDU K, ZHU Y, et al. 3D object proposals for accurate object class detection[C]//Advances in Neural Information Processing Systems, 2015, 28: 424-432.
[6] CHEN X, KUNDU K, ZHU Y, et al. 3D object proposals using stereo imagery for accurate object class detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(5): 1259-1272.
[7] LI P, CHEN X, SHEN S. Stereo R-CNN based 3D object detection for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 7644-7652.
[8] WANG Y, CHAO W L, GARG D, et al. Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 8445-8453.
[9] WENG X, KITANI K. Monocular 3D object detection with pseudo-lidar point cloud[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019: 857-866.
[10] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[11] LUO W, YANG B, URTASUN R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3569-3577.
[12] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[13] DENG J, SHI S, LI P, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209.
[14] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017, 30: 5100-5109.
[15] YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048.
[16] ZHOU S, TIAN Z, CHU X, et al. FastPillars: a deployment-friendly pillar-based 3D detector[J]. arXiv:2302.02367, 2023.
[17] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1907-1915.
[18] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2018: 5750-5757.
[19] SINDAGI V A, ZHOU Y, TUZEL O. MVX-Net: multimodal VoxelNet for 3D object detection[C]//Proceedings of the International Conference on Robotics and Automation, 2019: 7276-7282.
[20] YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 11784-11793.
[21] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 3354-3361.
[22] 刘永刚, 于丰宁, 章新杰, 等. 基于激光点云与图像融合的3D目标检测研究[J]. 机械工程学报, 2022, 58(24): 289-299.
LIU Y G, YU F N, ZHANG X J, et al. Research on 3D object detection based on laser point cloud and image fusion[J]. Journal of Mechanical Engineering, 2022, 58(24): 289-299.
[23] SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 1-21.
[24] 黄远宪, 李必军, 黄琦, 等. 融合相机与激光雷达的目标检测、跟踪与预测[J]. 武汉大学学报(信息科学版), 2024, 49(6): 945-951.?
HUANG Y X, LI B J, HUANG Q, et al. Camera-lidar fusion for object detection, tracking and prediction[J]. Geomatics and Information Science of Wuhan University, 2024,49(6): 945-951. |