
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 36-49.DOI: 10.3778/j.issn.1002-8331.2410-0128
何丽,杜洋鋆,李知远,冉腾,肖文东,姚佳程
出版日期:2025-05-15
发布日期:2025-05-15
HE Li, DU Yangjun, LI Zhiyuan, RAN Teng, XIAO Wendong, YAO Jiacheng
Online:2025-05-15
Published:2025-05-15
摘要: 随着能源化工产业的发展,有毒有害气体泄漏事故日益受到公众关注,应用机器人主动嗅觉技术实现泄漏气体溯源与定位已成为研究热点之一。目前,大多数研究综述是针对某一类方法在气味源定位中的应用进行总结,未能全面地总结机器人主动嗅觉技术的发展历程与研究进展。重点对移动机器人主动嗅觉气源定位方法展开综述,针对气源定位中烟羽发现、烟羽跟踪、气源确认三大子任务,详细对经典算法、研究现状与存在的问题进行分析。最后对机器人气源定位技术未来的发展趋势进行了讨论,针对当前机器人主动嗅觉研究中环境适应性不足、真实场景鲁棒性较差等问题,提出了多感官融合、烟羽跟踪算法优化及复杂环境应用等方面的研究展望,为下一步移动机器人主动嗅觉气源定位研究提供了一定的思路。
何丽, 杜洋鋆, 李知远, 冉腾, 肖文东, 姚佳程. 移动机器人主动嗅觉气源定位方法研究综述[J]. 计算机工程与应用, 2025, 61(10): 36-49.
HE Li, DU Yangjun, LI Zhiyuan, RAN Teng, XIAO Wendong, YAO Jiacheng. Review of Active Olfactory Odor Source Localization Methods for Mobile Robots[J]. Computer Engineering and Applications, 2025, 61(10): 36-49.
| [1] OLADEJI O, SAITAS M, MUSTAPHA T, et al. Air pollutant patterns and human health risk following the east Palestine, Ohio, train derailment[J]. Environmental Science & Technology Letters, 2023, 10(8): 680-685. [2] CHEN X X, HUANG J. Odor source localization algorithms on mobile robots: a review and future outlook[J]. Robotics and Autonomous Systems, 2019, 112: 123-136. [3] ISHIDA H, SUETSUGU K, NAKAMOTO T, et al. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[J]. Sensors and Actuators A: Physical, 1994, 45(2): 153-157. [4] RUSSELL R A, BAB-HADIASHAR A, SHEPHERD R L, et al. A comparison of reactive robot chemotaxis algorithms[J]. Robotics and Autonomous Systems, 2003, 45(2): 83-97. [5] 张东. 仿生机制下的机器人嗅觉感知与定位研究[D]. 武汉: 武汉科技大学, 2015. ZHANG D. Research on robot olfactory perception and localization under bionic mechanism[D]. Wuhan: Wuhan University of Science and Technology, 2015. [6] HAYES A T, MARTINOLI A, GOODMAN R M. Distributed odor source localization[J]. IEEE Sensors Journal, 2002, 2(3): 260-271. [7] 朱菲菲. 嗅视觉信息融合及移动机器人在气体泄漏源搜寻中的应用[D]. 天津: 天津理工大学, 2017. ZHU F F. Gas leak source search based on olfactory and visual information fusion and mobile robot[D]. Tianjin: Tianjin University of Technology, 2017. [8] 吴江波. 复杂环境下烟羽发现相关问题研究[D]. 天津: 天津理工大学, 2022. WU J B. Research on related problems of plume detection in complex environment[D]. Tianjin: Tianjin University of Technology, 2022. [9] 高春艳, 刘冬乐, 李满宏, 等. 基于仿生行为的气味源定位方法综述[J]. 科学技术与工程, 2022, 22(36): 15860-15869. GAO C Y, LIU D L, LI M H, et al. Review of odor source location methods based on bionic behavior[J]. Science Technology and Engineering, 2022, 22(36): 15860-15869. [10] ROZAS R, MORALES J, VEGA D. Artificial smell detection for robotic navigation[C]//Proceedings of the 5th International Conference on Advanced Robotics·Robots in Unstructured Environments. Piscataway: IEEE, 2002: 1730-1733. [11] RUSSELL R A, THIEL D, DEVEZA R, et al. A robotic system to locate hazardous chemical leaks[C]//Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1995: 556-561. [12] REEDER P B, ACHE B W. Chemotaxis in the Florida spiny lobster, Panulirus Argus[J]. Animal Behaviour, 1980, 28(3): 831-839. [13] CONSI T R, ATEMA J, GOUDEY C A, et al. AUV guidance with chemical signals[C]//Proceedings of the 2002 IEEE Symposium on Autonomous Underwater Vehicle Technology. Piscataway: IEEE, 2002: 450-455. [14] 赵攀, 袁杰, 王宏伟, 等. 基于决策树的羽流追踪机器人自主决策方法研究[J]. 计算机工程与应用, 2019, 55(14): 254-259. ZHAO P, YUAN J, WANG H W, et al. Research on autonomous decision-making of plume tracking robots using decision tree[J]. Computer Engineering and Applications, 2019, 55(14): 254-259. [15] ALT W. Biased random walk models for chemotaxis and related diffusion approximations[J]. Journal of Mathematical Biology, 1980, 9(2): 147-177. [16] YANG Y B, FENG Q L, CAI H, et al. Experimental study on three single-robot active olfaction algorithms for locating contaminant sources in indoor environments with no strong airflow[J]. Building and Environment, 2019, 155: 320-333. [17] GAURAV K, RANJAN P. Moth-inspired odor source localization using robotic platforms: a comprehensive review[J]. Adaptive Behavior, 2024, 32(4): 345-369. [18] KUWANA Y, SHIMOYAMA I, SAYAMA Y, et al. Synthesis of pheromone-oriented emergent behavior of a silkworm moth[C]//Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 1996: 1722-1729. [19] KUWANA Y, NAGASAWA S, SHIMOYAMA I, et al. Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors[J]. Biosensors and Bioelectronics, 1999, 14(2): 195-202. [20] SHIGAKI S, YAMADA M, KURABAYASHI D, et al. Robust moth-inspired algorithm for odor source localization using multimodal information[J]. Sensors, 2023, 23(3): 1475. [21] LOCHMATTER T, MARTINOLI A. Tracking odor plumes in a laminar wind field with bio-inspired algorithms[C]//Proceedings of the 11th International Symposium on Experimental Robotics. Berlin, Heidelberg: Springer, 2009: 473-482. [22] VERGASSOLA M, VILLERMAUX E, SHRAIMAN B I. Infotaxis as a strategy for searching without gradients[J]. Nature, 2007, 445(7126): 406-409. [23] 李吉功, 杨静, 周洁勇, 等. 室外环境下基于证据理论的多气味源测绘及定位[J]. 机器人, 2019, 41(6): 771-778. LI J G, YANG J, ZHOU J Y, et al. Mapping and localization of multiple odor sources with evidence theory in outdoor environments[J]. Robot, 2019, 41(6): 771-778. [24] 郎杉杉, 陈阳泉, 曹凯, 等. 多方向自适应步长的信息熵污染源定位方法[J]. 科学技术与工程, 2023, 23(9): 3804-3811. LANG S S, CHEN Y Q, CAO K, et al. Information entropy pollution source localization method with multi-direction and adaptive step size[J]. Science Technology and Engineering, 2023, 23(9): 3804-3811. [25] 宋程. 机器人气味溯源信息趋向搜索算法研究[D]. 西安: 西北工业大学, 2020. SONG C. Research on odor source search of robots based on infotaxis tracing[D]. Xi’an: Northwestern Polytechnical University, 2020. [26] HEINONEN R A, BIFERALE L, CELANI A, et al. Optimal policies for Bayesian olfactory search in turbulent flows[J]. Physical Review E, 2023, 107(5): 055105. [27] PIRO L, HEINONEN R A, CENCINI M, et al. Many wrong models approach to localize an odor source in turbulence with static sensors[J]. arXiv:2407.08343, 2024. [28] LIU S Q, ZHANG Y, FAN S R. Adaptive space-aware infotaxis II as a strategy for odor source localization[J]. Entropy, 2024, 26(4): 302. [29] 郭博轩. 基于轮式移动机器人的气味源定位方法研究[D]. 哈尔滨: 哈尔滨商业大学, 2024. GUO B X. Research on odor source localization method based on wheeled mobile robots[D]. Harbin: Harbin University of Commerce, 2024. [30] KAUSAR R, ZAYER F, VIEGAS J, et al. Efficient hybrid neuromorphic-Bayesian model for olfaction sensing: detection and classification[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2024: 2089-2095. [31] FARRELL J A, PANG S, LI W. Plume mapping via hidden Markov methods[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, Cybernetics, 2003, 33(6): 850-863. [32] LI H, YUAN J, YUAN H. An active olfaction approach using deep reinforcement learning for indoor attenuation odor source localization[J]. IEEE Sensors Journal, 2024, 24(9): 14561-14572. [33] ZHAO Y, CHEN B, WANG X H, et al. A deep reinforcement learning based searching method for source localization[J]. Information Sciences, 2022, 588: 67-81. [34] WANG L X, PANG S. Robotic odor source localization via end-to-end recurrent deep reinforcement learning[C]//Proceedings of the 2023 7th IEEE International Conference on Robotic Computing. Piscataway: IEEE, 2023: 43-50. [35] HE Y, CHENG L, PAN Y D, et al. Gas source localization using dueling deep Q-network with an olfactory quadruped robot[J]. International Journal of Advanced Robotic Systems, 2024, 21(3): 17298806241255797. [36] YAN Z, MENG Q H, JING T, et al. A deep learning-based indoor odor compass[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2505410. [37] YAN Z, MENG Q H, CHEN S W, et al. Estimating odor source proximity via two MOS sensors based on deep learning method[J]. Measurement, 2023, 214: 112781. [38] ZHAO G J, MATSUKURA H, SAKAUE M, et al. Gas source localization in outdoor environment using deep learning: data augmentation by gas dispersion simulator[C]//Proceedings of the 2024 IEEE International Symposium on Olfaction and Electronic Nose. Piscataway: IEEE, 2024: 1-3. [39] REGGENTE M, LILIENTHAL A J. The 3D-kernel DM V/W algorithm: using wind information in three dimensional gas distribution modelling with a mobile robot[C]//Proceedings of the 9th IEEE Sensors Conference. Piscataway: IEEE, 2010: 999-1004. [40] 祁柏林, 崔英杰, 王帅, 等. 基于M-ACO算法的空气污染源反演[J]. 计算机系统应用, 2022, 31(8): 273-279. QI B L, CUI Y J, WANG S, et al. Retrieval of air pollution sources based on M-ACO algorithm[J]. Computer Systems and Applications, 2022, 31(8): 273-279. [41] 刘畅, 苏腾, 周汝, 等. 修正高斯模型下气体泄漏源项信息反算研究[J]. 中国安全科学学报, 2022, 32(7): 98-104. LIU C, SU T, ZHOU R, et al. Investigation on back-calculation of leakage source information of gas based on modified Gaussian model[J]. China Safety Science Journal, 2022, 32(7): 98-104. [42] LIU Y Z, JIANG Y, ZHANG X, et al. Combined grey wolf optimizer algorithm and corrected Gaussian diffusion model in source term estimation[J]. Processes, 2022, 10(7): 1238. [43] 邓思丹, 范书瑞, 张艳. 基于气体扩散模型的信息趋向搜索方法研究[J]. 电子测量技术, 2022, 45(12): 58-65. DENG S D, FAN S R, ZHANG Y. Research on location method of infotaxis research algorithm on gas diffusion model[J]. Electronic Measurement Technology, 2022, 45(12): 58-65. [44] ZHOU J M, ZHANG J M, ZHANG J L, et al. Hydrogen leakage source positioning method in deep belief network based on fully confined space Gaussian distribution model[J]. International Journal of Hydrogen Energy, 2024, 63: 435-445. [45] 何丽, 姚佳程, 廖雨鑫, 等. 深度强化学习求解移动机器人端到端导航问题的研究综述[J]. 计算机工程与应用, 2024, 60(14): 1-13. HE L, YAO J C, LIAO Y X, et al. Research review on deep reinforcement learning for solving end-to-end navigation problems of mobile robots[J]. Computer Engineering and Applications, 2024, 60(14): 1-13. [46] 王巍, 崔益豪, 王彤, 等. 群智能算法在气体源定位中的应用综述[J]. 计算机工程与应用, 2019, 55(18): 21-33. WANG W, CUI Y H, WANG T, et al. Survey of application of swarm intelligence algorithm in gas source location[J]. Computer Engineering and Applications, 2019, 55(18): 21-33. [47] MARQUES L, NUNES U, DE ALMEIDA A T. Particle swarm-based olfactory guided search[J]. Autonomous Robots, 2006, 20(3): 277-287. [48] JATMIKO W, SEKIYAMA K, FUKUDA T. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement[J]. IEEE Computational Intelligence Magazine, 2007, 2(2): 37-51. [49] CHEN X X, HUANG J. Combining particle filter algorithm with bio-inspired anemotaxis behavior: a smoke plume tracking method and its robotic experiment validation[J]. Measurement, 2020, 154: 107482. [50] FENG Q L, CAI H, YANG Y B, et al. An experimental and numerical study on a multi-robot source localization method independent of airflow information in dynamic indoor environments[J]. Sustainable Cities and Society, 2020, 53: 101897. [51] JABEEN M, MENG Q H, JING T, et al. Robot odor source localization in indoor environments based on gradient adaptive extremum seeking search[J]. Building and Environment, 2023, 229: 109983. [52] ZHANG H L, CHEN J H, LI B, et al. Multiple source tracking and identifications in urban regions with unstable wind flows: particle swarm optimization methodologies and their benchmark solutions[J]. Building and Environment, 2024, 248: 111062. [53] AWADALLAH M A, MAKHADMEH S N, AL-BETAR M A, et al. Multi-objective ant colony optimization: review[J]. Archives of Computational Methods in Engineering, 2024.DOI: 10.1007/s11831-024-10178-4. [54] MENG Q H, LI J C, LI F, et al. Mobile robots odor localization with an improved ant colony algorithm[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2006: 959-964. [55] CHE H L, SHI C L, XU X, et al. Research on improved ACO algorithm-based multi-robot odor source localization[C]//Proceedings of the 2018 2nd International Conference on Robotics and Automation Sciences. Piscataway: IEEE, 2018: 1-5. [56] PURBOLINGGA Y, JAZIDIE A, EFFENDI R. Modified ant colony algorithm for swarm multi agent exploration on target searching in unknown environment[C]//Proceedings of the 2019 International Conference of Artificial Intelligence and Information Technology. Piscataway: IEEE, 2019: 175-179. [57] 陈泽众, 姚逸卿. 仿蚁群觅食返巢群体智能行为的自主导航方法[C]//惯性技术发展动态发展方向研讨会文集: 新型惯性元件与先进导航技术, 2023: 125-132. CHEN Z Z, YAO Y Q. Autonomous navigation method mimicking the intelligent behavior of an ant colony foraging and returning to the nesting colony[C]//Proceedings of the Symposium on Dynamic Directions in Inertial Technology Development: New Inertial Components and Advanced Navigation Technology, 2023: 125-132. [58] YANG X S, DEB S. Cuckoo search via Lévy flights[C]//Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE, 2009: 210-214. [59] 方园园. 基于布谷鸟算法的气味源识别方法研究[J]. 矿业研究与开发, 2021, 41(2): 183-189. FANG Y Y. Research on odor source identification method based on the cuckoo algorithm[J]. Mining Research and Development, 2021, 41(2): 183-189. [60] 黄建新, 袁杰. 三维空间机器人主动嗅觉烟羽源自主定位策略[J]. 计算机工程与应用, 2020, 56(12): 223-230. HUANG J X, YUAN J. Autonomous location strategy of plume source in three-dimensional space using robot with active olfactory[J]. Computer Engineering and Applications, 2020, 56(12): 223-230. [61] WU Y, WANG Z. An improved cuckoo search algorithm for multiple odor sources localization[C]//Proceedings of the 13th International Conference on Agents and Artificial Intelligence, 2021: 708-715. [62] MIRJALILI S, MIRJALILI S, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [63] SHEN X Y, YUAN J, SHAN Y G. A novel plume tracking method in partial 3D diffusive environments using multi-sensor fusion[J]. Expert Systems with Applications, 2021, 178: 114993. [64] JIN X Q, ZHANG X F, JIANG H, et al. Hybrid strategy improved grey wolf optimization algorithm for plume tracking and localization method in indoor weak wind environment[J]. IEEE Access, 2022, 10: 100976-100986. [65] JAIN U, KANSAL V, BHATLA S, et al. Performance evaluation of PSO and its variants for odor source localization[C]//Proceedings of the 2023 3rd International Conference on Innovative Sustainable Computational Technologies. Piscataway: IEEE, 2023: 1-5. [66] CHEN Z Q, WANG Y M, QI C C, et al. Leakage source location of hazardous chemicals based on the improved gray wolf optimization algorithm[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2024, 28(3): 484-493. [67] 缪燕子, 王玥, 李元龙, 等. 融合学习策略与导向果蝇机制的气味源主动定位方法研究[J]. 控制理论与应用, 2023, 40(5): 913-922. MIAO Y Z, WANG Y, LI Y L, et al. Study on active odor source localization method based on learning strategy and guided fruit fly mechanism[J]. Control Theory & Applications, 2023, 40(5): 913-922. [68] YANG Z Z, JING T, MENG Q H. UAV-based odor source localization in multi-building environments using simulated annealing algorithm[C]//Proceedings of the 2020 39th Chinese Control Conference. Piscataway: IEEE, 2020: 3806-3811. [69] 王建邦, 喇元. 变电站内SF6分解物检测追踪系统设计[J]. 中国测试, 2024, 50(3): 144-151. WANG J B, LA Y. Design of SF6 decomposition gas plume detection and tracking system in substation[J]. China Measurement & Test, 2024, 50(3): 144-151. [70] 郭振宇, 袁杰, 马圣山. 樽海鞘群行为启发的多机器人自主羽流寻源方法[J]. 现代电子技术, 2023, 46(22): 175-182. GUO Z Y, YUAN J, MA S S. A multi-robot autonomous plume source-seeking method inspired by slap swarm behaviors[J]. Modern Electronics Technique, 2023, 46(22): 175-182. [71] 崔益豪, 王巍, 王彤, 等. 三维空间的自适应气体源定位方法[J]. 计算机工程与设计, 2020, 41(11): 3241-3248. CUI Y H, WANG W, WANG T, et al. Adaptive gas source localization method in three-dimensional space[J]. Computer Engineering and Design, 2020, 41(11): 3241-3248. [72] 冯崧, 曾祥进, 黄瑜豪. 基于改进烟花优化算法的三维空间气体源定位[J]. 中国安全生产科学技术, 2024, 20(3): 69-76. FENG S, ZENG X J, HUANG Y H. Localization of gas source in three-dimensional space based on improved fireworks optimization algorithm[J]. Journal of Safety Science and Technology, 2024, 20(3): 69-76. [73] CAI H, TONG C X, LI Z F, et al. Efficient particulate matter source localization in dynamic indoor environments: an experimental study by a multi-robot system[J]. Journal of Building Engineering, 2024, 92: 109712. [74] WANG L, REN Z Y, FAN S R, et al. A novel hybrid information-based PF-WOA algorithm for gas source localization in 3D space[J]. Robotica, 2024, 42(11): 3748-3767. [75] LIN Q, WU S H, WU S F, et al. Development and simulation of two novel indoor odor source localization methods using a modified shark smell optimization algorithm[J]. Measurement, 2025, 240: 115562. [76] 王玥. 基于导向果蝇学习策略的气味源主动定位研究[D]. 徐州: 中国矿业大学, 2022. WANG Y. Study of active odor source localization based on learning strategy for guided fruit fly algorithm[D]. Xuzhou: China University of Mining and Technology, 2022. [77] 刘江莹. 基于气敏机器人的目标气味识别与源定位研究[D]. 武汉: 武汉科技大学, 2021. LIU J Y. Research on target odor discrimination and source location based on odor-sensitive mobile robot[D]. Wuhan: Wuhan University of Science and Technology, 2021. [78] LILIENTHAL A, ULMER H, FROHLICH H, et al. Gas source declaration with a mobile robot[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2004: 1430-1435. [79] 刘锐蕊. 基于改进黏菌算法的多机器人气味源定位算法研究[D]. 杭州: 浙江工商大学, 2023. LIU R R. Research on odor source location algorithm of multi-robot based on improved slime mold algorithm[D]. Hangzhou: Zhejiang Gongshang University, 2023. [80] KOWADLO G, RAWLINSON D, RUSSELL R A, et al. Bi-modal search using complementary sensing (olfaction/vision) for odour source localisation[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2006: 2041-2046. [81] 蒋萍, 孟庆浩, 曾明, 等. 融合机器人视/嗅觉信息的室内气体源识别[J]. 高技术通讯, 2011, 21(8): 867-873. JIANG P, MENG Q H, ZENG M, et al. Indoor gas source identification by fusing visual and olfactory information of a mobile robot[J]. Chinese High Technology Letters, 2011, 21(8): 867-873. [82] MA S S, YUAN J, GUO Z Y, et al. Autonomous plume near-source search assisted by intermittent visible plume information using finite state machine and YOLOv3-tiny[J]. Expert Systems with Applications, 2023, 228: 120350. [83] HASSAN S, WANG L X, MAHMUD K R. Robotic odor source localization via vision and olfaction fusion navigation algorithm[J]. Sensors, 2024, 24(7): 2309. [84] WANG J F, TCHAPMI L P, RAVIKUMAR A P, et al. Machine vision for natural gas methane emissions detection using an infrared camera[J]. Applied Energy, 2020, 257: 113998. [85] 江逸远, 谷小婧, 顾幸生. 基于红外视频的VOCs泄漏源定位与气羽实例分割[J]. 华东理工大学学报(自然科学版), 2024, 50(5): 695-707. JIANG Y Y, GU X J, GU X S. VOCs leakage source location and gas plume instance segmentation based on infrared video[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2024, 50(5): 695-707. [86] SONG K, LIU Q, WANG Q. Olfaction and hearing based mobile robot navigation for odor/sound source search[J]. Sensors, 2011, 11(2): 2129-2154. [87] CHEN C M, XUE Y Y, XIONG Y Z, et al. An auditory and olfactory data fusion algorithm based on spiking neural network for mobile robot[C]//Proceedings of the 2022 IEEE International Symposium on Olfaction and Electronic Nose. Piscataway: IEEE, 2022: 1-4. [88] 刘冬乐, 高春艳, 李满宏, 等. 改进D-S算法的多感知机器人泄漏源识别研究[J]. 计算机工程与应用, 2023, 59(21): 334-340. LIU D L, GAO C Y, LI M H, et al. Research on leakage source identification of multi-perception robot based on improved D-S algorithm[J]. Computer Engineering and Applications, 2023, 59(21): 334-340. [89] TAN H W, ZHOU Y F, TAO Q Z, et al. Bioinspired multisensory neural network with crossmodal integration and recognition[J]. Nature Communications, 2021, 12(1): 1120. [90] CHENG X, ZHANG H T, ZHANG J N, et al. Intelligent multi-modal sensing-communication integration: synesthesia of machines[J]. IEEE Communications Surveys & Tutorials, 2023, 26(1): 258-301. |
| [1] | 申思康, 孙波, 薛瑞雷, 马铜伟. 基于多层代价地图的启发式覆盖路径规划算法[J]. 计算机工程与应用, 2025, 61(9): 363-369. |
| [2] | 鲁宇明, 周羽逵, 郭鑫, 池吕庭, 戴骏. 改进Informed RRT*算法移动机器人路径规划[J]. 计算机工程与应用, 2025, 61(8): 283-293. |
| [3] | 郭聚刚, 于军琪, 冯春勇, 王凯, 陈易圣, 董振平. 基于改进A*算法的机器人不平坦地形全局路径规划[J]. 计算机工程与应用, 2025, 61(5): 309-322. |
| [4] | 王琪, 何宁. 融合内在拓扑与多尺度时间特征的骨架动作识别[J]. 计算机工程与应用, 2025, 61(4): 150-157. |
| [5] | 周宏毅, 章国宝, 朱宏伟. 室内测绘机器人自主定位与三维建图研究[J]. 计算机工程与应用, 2024, 60(8): 329-337. |
| [6] | 江进宝, 宣士斌, 付杰. 融合时空信息的Transformer单目标跟踪算法[J]. 计算机工程与应用, 2024, 60(19): 230-241. |
| [7] | 楼进, 刘恩博, 唐炜, 张仁远. CPU环境下多传感器数据融合的机器人3D目标检测方法[J]. 计算机工程与应用, 2024, 60(19): 120-129. |
| [8] | 唐跃中, 卢士达, 钱李烽, 位雪银, 顾荣斌, 黄君, 李静. IDFE:面向物联网设备识别的指纹深度提取方法[J]. 计算机工程与应用, 2024, 60(17): 117-128. |
| [9] | 司聪敏, 王转. 不同跟随策略下RMFS调度问题研究[J]. 计算机工程与应用, 2024, 60(11): 356-366. |
| [10] | 江纯兴, 吴锋. 结合维诺区域分割和路径优化的路径规划算法[J]. 计算机工程与应用, 2024, 60(10): 311-319. |
| [11] | 辛苗苗, 马丽, 胡博发. 融合多粒度信息的文本分类研究[J]. 计算机工程与应用, 2023, 59(9): 104-111. |
| [12] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
| [13] | 彭泽鑫, 曾碧, 刘建圻. 基于全局特征点匹配的全局定位方法[J]. 计算机工程与应用, 2023, 59(3): 264-275. |
| [14] | 刘冬乐, 高春艳, 李满宏, 张明路, 陶渊. 改进D-S算法的多感知机器人泄漏源识别研究[J]. 计算机工程与应用, 2023, 59(21): 334-340. |
| [15] | 王旭, 朱其新, 朱永红. 面向二维移动机器人的路径规划算法综述[J]. 计算机工程与应用, 2023, 59(20): 51-66. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||