[1] KOUICEM D, BOUABDALLAH A, LAKHLEF H. Internet of things security: a top-down survey[J]. Computer Networks, 2018, 141(1): 199-221.
[2] XIE N, LEUNG H. Internet of things (IoT) in Canadian smart cities: an overview[J]. IEEE Instrumentation & Measurement Magazine, 2021, 24(3): 68-77.
[3] KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. DDos in the IoT: mirai and other botnets[J]. Computer, 2017, 50(7): 80-84.
[4] MIETTINEN M, MARCHAL S, HAFEEZ I, et al. IoT sentinel demo: automated device-type identification for security enforcement in IoT[C]//Proceedings of the IEEE International Conference on Distributed Computing Systems, 2017: 2511-2514.
[5] BEZAWADA B, BACHANI M. Behavioral fingerprinting of IoT devices[C]//Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, 2018: 41-50.
[6] HAMAD S, ZHANG W E, SHENG Q Z, et al. IoT device identification via network-flow based fingerprinting and learning[C]//Proceedings of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 2019: 103-111.
[7] AHMED D, DAS A, ZAFFAR F. Analyzing the feasibility and generalizability of fingerprinting Internet of things devices[J]. Proceedings on Privacy Enhancing Technologies, 2022, 2022: 578-600.
[8] KOSTAS K, JUST M, LONES M. IoTDevID: a behaviour-based fingerprinting method for device identification in the IoT[J]. IEEE Internet of Things Journal, 2022, 9(23): 23741-23749.
[9] MAZHAR M, SHAFIQ Z. Characterizing smart home IoT traffic in the wild[C]//Proceedings of the 2020 IEEE/ACM 5th International Conference on Internet-of-Things Design and Implementation, 2020: 203-215.
[10] ANEJA S, ANEJA N, ISLAM M. IoT device fingerprint using deep learning[C]//Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System, 2018: 174-179.
[11] NOGUCHI H, DEMIZU T, HOSHIKAWA N, et al. Autonomous device identification architecture for internet of things[C]//Proceedings of the 2018 IEEE 4th World Forum on Internet of Things, 2018: 407-411.
[12] GUO H, HEIDEMANN J. Detecting IoT devices in the internet[J]. IEEE/ACM Transactions on Networking, 2020, 28(5): 2323-2336.
[13] MARCHAL S, MIETTINEN M, NGUYEN T, et al. AuDI: toward autonomous IoT device-type identification using periodic communication[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1402-1412.
[14] SIVANATHAN A, GHARAKHEILI H, LOI F, et al. Classifying IoT devices in smart environments using network traffic characteristics[J]. IEEE Transactions on Mobile Computing, 2018, 18(8): 1745-1759.
[15] FAN L, HE L, WU Y, et al. AutoIoT: automatically updated IoT device identification with semi-supervised learning[J]. IEEE Transactions on Mobile Computing, 2022, 22(1): 1-20.
[16] FRANKLIN J, MCCOY D, TABRIZ P et al. Passive data link layer 802.11 wireless device driver fingerprinting[C]//Proceedings of the 15th Conference on USENIX Security Symposium, 2006: 16-89.
[17] CHARYYEV B, GUNES M. IoT traffic flow identification using locality sensitive hashes[C]//Proceedings of the 2020 IEEE International Conference on Communications, 2020: 1-6.
[18] AKSOY A, GUNES M. Automated IoT device identification using network traffic[C]//Proceedings of the 2019 IEEE International Conference on Communications, 2019: 1-7.
[19] YIN F, YANG L, WANG Y, et al. IoT ETEI: end-to-end IoT device identification method[C]//Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing, 2021: 1-8.
[20] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking, 2017: 712-717.
[21] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[22] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Neural Information Processing Systems, 2017: 6000-6010.
[24] PERDISCI R, PAPASTERGIOU T, ALRAWI O, et al. IoTFinder: efficient large-scale identification of IoT devices via passive DNS traffic analysis[C]//Proceedings of the 2020 IEEE European Symposium on Security and Privacy, 2020: 474-489.
[25] ALRAWI O, LEVER C, ANTONAKAKIS M, et al. SoK: security evaluation of home-based IoT deployments[C]//Proceedings of the 40th IEEE Symposium on Security and Privacy, 2019: 1362-1380.
[26] BIKMUKHAMEDOV R F, NADEEV A F. Multi-class network traffic generators and classifiers based on neural networks[C]//Proceedings of the 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, 2021: 1-7.
[27] YIN F, YANG L, MA J, et al. Identifying IoT devices based on spatial and temporal features from network traffic[J]. Security and Communication Networks, 2021, 2021: 1-16.
[28] CHOWDHURY R R, CHE I A, ABAS P E. Internet of things device classification using transport and network layers communication traffic traces[J]. International Journal of Computing and Digital Systems, 2022, 12(1): 545-555.
[29] LIU X, HAN Y, DU Y. IoT device identification using directional packet length sequences and 1D-CNN[J]. Sensors, 2022, 22(21): 8337.
[30] CHOWDHURY R R, IDRIS A C, ABAS P E. A deep learning approach for classifying network connected IoT devices using communication traffic characteristics[J]. Journal of Network and Systems Management, 2023, 31: 1-21.
[31] FAN L, ZHANG S, WU Y, et al. An IoT device identification method based on semi-supervised learning[C]//Proceedings of the 2020 16th International Conference on Network and Service Management, 2020: 1-7.
[32] KOTAK J, ELOVICI Y. IoT device identification using deep learning[C]//Proceedings of the Computational Intelligence in Security for Information Systems Conference, 2019: 76-86.
[33] VANDER M L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |