[1] JIA G, LI X, ZHANG D, et al. Visual-SLAM classical framework and key techniques: a review[J]. Sensors, 2022, 22(12): 4582.
[2] SMITH R. On the estimation and representation of spatial uncertainty[J]. The International Journal of Robotics Research, 1987, 5(4): 113-119.
[3] 徐武, 高寒, 王欣达, 等. 改进ORB-SLAM2算法的关键帧选取及地图构建研究[J]. 电子测量技术, 2022, 45(20): 143-150.
XU W, GAO H, WANG X D, et al. Research on key frame selection and map construction of improved ORB-SLAM2 algorithm[J]. Electronic Measurement Technology, 2022, 45(20): 143-150.
[4] KLEIN G, MURRAY D. Parallel tracking and mapping on a camera phone[C]//Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, 2009: 83-86.
[5] ENGEL J, SCH?PS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 834-849.
[6] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[7] CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap slam[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
[8] WANG R, SCHWORER M, CREMERS D. Stereo DSO: large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3903-3911.
[9] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
[10] YU C, LIU Z, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018: 1168-1174.
[11] SAPUTRA M R U, MARKHAM A, TRIGONI N. Visual SLAM and structure from motion in dynamic environments: a survey[J]. ACM Computing Surveys, 2018, 51(2): 1-36.
[12] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[13] 刘钰嵩, 何丽, 袁亮, 等. 动态场景下基于光流的语义RGBD-SLAM算法[J]. 仪器仪表学报, 2022, 43(12): 139-148.
LIU Y S, HE L, YUAN L, et al. Dynamic context semantic RGBD-SLAM algorithm based on optical flow[J]. Journal of Instruments and Meters, Lancet, 2022, 43(12): 139-148.
[14] GWYNNE S, ROSENBAUM E R. Employing the hydraulic model in assessing emergency movement[M]//SFPE Handbook of Fire Protection Engineering. New York: Springer, 2016: 2115-2151.
[15] BESCOS B, FáCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083.
[16] ZHONG F, WANG S, ZHANG Z, et al. Detect-SLAM: making object detection and SLAM mutually beneficial[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, 2018: 1001-1010.
[17] XIAO L, WANG J, QIU X, et al. Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment[J]. Robotics and Autonomous Systems, 2019, 117: 1-16.
[18] WANG S, LV X, LI J, et al. Coarse semantic-based motion removal for robust mapping in dynamic environments[J]. IEEE Access, 2020, 8: 74048-74064.
[19] SUN T, SUN Y, LIU M, et al. Movable-object-aware visual slam via weakly supervised semantic segmentation[J]. arXiv:1906.03629, 2019.
[20] 高兴波, 史旭华, 葛群峰, 等. 面向动态物体场景的视觉SLAM综述[J]. 机器人, 2021, 43(6): 733-750.
GAO X B, SHI X H, GE Q F, et al. Dynamic scene object oriented visual SLAM review[J]. Robot, 2021, 43(6): 733-750.
[21] 胡远志, 蒋涛, 刘西, 等. 基于双流自适应图卷积神经网络的行人过街意图识别[J]. 汽车安全与节能学报, 2022, 13(2): 325-332.
HU Y Z, JIANG T, LIU X, et al. Pedestrian crossing intention recognition based on dual-stream adaptive graph convolutional neural network[J]. Journal of Automotive Safety and Energy Conservation, 2022, 13(2): 325-332.
[22] ZENG Z. High efficiency pedestrian crossing prediction[J]. arXiv:2204.01862, 2022.
[23] RANFTL R, BOCHKOVSKIY A, KOLTUN V. Vision transformers for dense prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 12179-12188.
[24] 宋佳艳, 苏圣超. 基于改进蚁群优化算法的自动驾驶多车协同运动规划[J]. 计算机工程, 2022, 48(11): 299-305.
SONG J Y, SU S C. Based on improved ant colony optimization algorithm of automatic car driving more coordinated motion planning[J]. Computer Engineering, 2022, 48(11): 299-305.
[25] SONG S J, LAN C L, XING J L, et al. An end to-end spatio-temporal attention model for human action recognition from skeleton data[C]//Proceedings of the 31st AAAI Conference Artificial Intelligence, 2017: 4263-4270.
[26] QUINTERO R, PARRA I, LORENZO J, et al. Pedestrian intention recognition by means of a hidden Markov model and body language[C]//Proceedings of the 2017 IEEE 20th International Conference Intelligence Transportation Systems, 2017: 1-7. |