[1] 廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6): 1046-1052.
LIAO X H, XIAO Q, ZHANG H. UAV remote sensing: popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6): 1046-1052.
[2] YANG Z, WU Q, ZHANG F, et al. Optimizing spatial relationships in GCN to improve the classification accuracy of remote sensing images[J]. Intelligent Automation & Soft Computing, 2023, 37(1): 491-506.
[3] YANG Q C, LIU M, ZHANG Z T, et al. Mapping plastic mulched farmland for high resolution images of unmanned aerial vehicle using deep semantic segmentation[J]. Remote Sensing, 2019, 11(17): 2008-2023.
[4] PI Y, NATH N D, BEHZADAN A H. Detection and semantic segmentation of disaster damage in UAV footage[J]. Journal of Computing in Civil Engineering, 2021, 35(2): 04020063.
[5] GUO Y T, LONG T F, JIAO W L, et al. Siamese detail difference and self-inverse network for forest cover change extraction based on Landsat 8 OLI satellite images[J]. Remote Sensing, 2022, 14(3): 627-646.
[6] AHLSWEDE S, THEKKE-MADAM N, SCHULZ C, et al. Weakly supervised semantic segmentation of remote sensing images for tree species classification based on explanation methods[J]. arXiv: 2201.07495, 2022.
[7] SARITURK B, SEKER D Z. Comparison of residual and dense neural network approaches for building extraction from high-resolution aerial images[J]. Advances in Space Research, 2023, 71(7): 3076-3089.
[8] 张浩然, 赵江洪, 张晓光. 利用 U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3): 143-150.
ZHANG H R, ZHAO J H, ZHANG X G. Building extraction of high-resolution remote sensing images using U-net network[J]. Remote Sensing Information, 2020, 35(3): 143-150.
[9] ZHANG X J, WANG X L. Image segmentation models of remote sensing using full residual connectin and feature fusion[J]. National Remote Sensing Bulletin, 2020, 24(9): 1120-1133.
[10] YANG J Y, ZHOU Z X, DU Z R, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 251-258.
[11] CUI M, LI K, LI Y, et al. Semi-supervised semantic segmentation of remote sensing images based on dual cross-entropy consistency[J]. Entropy, 2023, 25(4): 681.
[12] JI X, TANG L, LU T, et al. DBENet: dual-branch ensemble network for sea-land segmentation of remote-sensing images[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
[13] ZHOU Z, SIDDIQUEE M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support (DLMIA). Berlin: Springer-Verlag, 2018: 3-11.
[14] ZHANG C, HARRISON P A, PAN X, et al. Scale sequence joint deep learning (SS-JDL) for land use and land cover classification[J]. Remote Sensing of Environment, 2020, 237: 111593.
[15] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[16] 张哲晗, 方薇, 杜丽丽, 等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40(3): 10-16.
ZHANG Z H, FANG W, DU L L, et al. Remote sensing image semantic segmentation based on encoding decoding convolutional neural network[J]. Journal of Optics, 2020, 40(3): 10-16.
[17] GUO Y, JIA X, PAULL D. Effective sequential classifier training for SVM-based multitemporal remote sensing image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6): 3036-3048.
[18] 刘腊梅, 王晓娜, 刘万军, 等. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142.
LIU L M, WANG X N, LIU W J, et al. Image semantic segmentation method with fusion of transposed convolution and deep residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142.
[19] ADEDE C, OBOKO R, WAGACHA P W, et al. A mixed model approach to vegetation condition prediction using artificial neural networks (ANN): case of Kenya’s operational drought monitoring[J]. Remote Sensing, 2019, 11(9): 1099.
[20] 欧阳柳, 贺禧, 瞿绍军. 全卷积注意力机制神经网络的图像语义分割[J]. 计算机科学与探索, 2022, 16(5): 1136-1145.
OUYANG L, HE X, QU S J. ?Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145.
[21] LIU Z, NING J, CAO Y, et al. Video swin transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3202-3211.
[22] LI R, DUAN C, ZHENG S, et al. MACU-Net for semantic segmentation of fine-resolution remotely sensed images[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1-5.
[23] ALAM M, WANG J F, CONG G, et al. Convolutional neural network for the semantic segmentation of remote sensing images[J]. Mobile Networks and Applications, 2021, 26: 200-215.
[24] 孙汉淇, 潘晨, 何灵敏, 等. 多模态特征融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2022, 58(24): 256-264.
SUN H Q, PAN C, HE L M, et al. Remote sensing image semantic segmentation network based on multimodal feature fusion[J]. Computer Engineering and Applications, 2022, 58(24): 256-264. |