[1] DASTOUR H, HASSAN Q K J S. A comparison of deep transfer learning methods for land use and land cover classification[J]. Sustainability, 2023, 15(10): 7854.
[2] VAN LEEUWEN B, TOBAK Z, KOVáCS F J J O E G. Machine learning techniques for land use/land cover classification of medium resolution optical satellite imagery focusing on temporary inundated areas[J]. Journal of Environmental Geography, 2020, 13(1/2): 43-52.
[3] WANG J, BRETZ M, DEWAN M A A, et al. Machine learning in modelling land-use and land cover-change (LULCC): current status, challenges and prospects[J]. Science of The Total Environment, 2022, 822: 153559.
[4] NAUSHAD R, KAUR T, GHADERPOUR E. Deep transfer learning for land use and land cover classification: a comparative study[J]. Sensors, 2021, 21(23): 13.
[5] HE T D, WANG S X. Multi-spectral remote sensing land-cover classification based on deep learning methods[J]. J Supercomput, 2021, 77(3): 2829-2843.
[6] JAMALI A J S A S. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran[J]. SN Applied Sciences, 2019, 1(11): 1448.
[7] SARGENT I, ZHANG C, ATKINSON P M. Joint deep learning for land cover and land use classification[J]. Remote Sensing of Environment, 2019, 221: 173-187.
[8] KROUPI E, KESA M, NAVARRO-SANCHEZ V D, et al. Deep convolutional neural networks for land-cover classification with Sentinel-2 images[J]. J Appl Remote Sens, 2019, 13(2): 1-22.
[9] PAPOUTSIS I, BOUNTOS N I, ZAVRAS A, et al. Benchmarking and scaling of deep learning models for land cover image classification[J]. ISPRS-J Photogramm Remote Sens, 2023, 195: 250-268.
[10] MANZANAREZ S, MANIAN V, SANTOS M. Land use land cover labeling of GLOBE images using a deep learning fusion model[J]. Sensors, 2022, 22(18): 6895.
[11] CHEN B, XIA M, HUANG J. MFANet: a multi-level feature aggregation network for semantic segmentation of land cover[J]. Remote Sens, 2021, 13(4): 731.
[12] TONG X Y, XIA G S, LU Q K, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322.
[13] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241.
[14] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: a nested U-net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and 8th International Workshop on Multimodal Learning for Clinical Decision Support, Granada, Spain, 2018: 3-11.
[15] HUANG H, LIN L, TONG R, et al. Unet 3+: a full-scale connected unet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 1055-1059.
[16] LI R, ZHENG S, DUAN C, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[17] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[18] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[19] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
[20] POLIYAPRAM V, IMAMOGLU N, NAKAMURA R. Deep learning model for water/ice/land classification using large-scale medium resolution satellite images[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019: 3884-3887.
[21] HE C, LIU Y, WANG D, et al. Automatic extraction of bare soil land from high-resolution remote sensing images based on semantic segmentation with deep learning[J]. Remote Sensing, 2023, 15(6): 1646.
[22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[23] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[25] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[26] XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
[27] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[29] LI R, ZHENG S, ZHANG C, et al. Multiattention network for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13.
[30] LONG J, LI M M, WANG X Q. Integrating spatial details with long-range contexts for semantic segmentation of very high-resolution remote-sensing images[J]. IEEE Geosci Remote Sens Lett, 2023, 20: 1-5.
[31] QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[32] ZHANG Y, CHEN H J, LI Y F, et al. ImDeeplabV3plus with instance selective whitening loss in domain generalization semantic segmentation[J]. IET Intell Transp Syst, 2023, 17(1): 180-192.
[33] CHEN Y, FANG P, YU J, et al. Hi-ResNet: a high-resolution remote sensing network for semantic segmentation[J]. arXiv:2305.12691, 2023. |