[1] 孙汉淇, 潘晨, 何灵敏, 等. 多模态特征融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2022, 58(24): 256-264.
SUN H Q, PAN C, HE L M, et al. Remote sensing image semantic segmentation network based on multimodal feature fusion[J]. Computer Engineering and Applications, 2022, 58(24): 256-264.
[2] 李道纪, 郭海涛, 卢俊, 等. 遥感影像地物分类多注意力融和U型网络法[J]. 测绘学报, 2020, 49(8): 1051-1064.
LI D J, GUO H T, LU J, et al. A remote sensing image classification procedure based on multilevel attention fusion U-Net[J]. Acta Geodaeticaet Cartographica Sinica, 2020, 49(8): 1051-1064.
[3] 左宗成, 张文, 张东映. 融合可变形卷积与条件随机场的遥感影像语义分割方法[J]. 测绘学报, 2019, 48(6): 718-726.
ZUO Z C, ZHANG W, ZHANG D Y. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaeticaet Cartographica Sinica, 2019, 48(6): 718-726.
[4] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv:1704.06857, 2017.
[5] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[6] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. arXiv:1505.04597, 2015.
[7] 刘腊梅, 王晓娜, 刘万军, 等. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142.
LIU L M, WANG X N, LIU W J, et al. Image semantic segmentation method with fusion of transposed convolution and deep residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142.
[8] 欧阳柳, 贺禧, 瞿绍军. 全卷积注意力机制神经网络的图像语义分割[J]. 计算机科学与探索, 2022, 16(5): 1136-1145.
OUYANG L, HE X, QU S J. Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145.
[9] ZHANG X, XU H, MO H, et al. Dcnas: densely connected neural architecture search for semantic image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13956-13967.
[10] MI L, CHEN Z. Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 140-152.
[11] 张哲晗, 方薇, 杜丽丽, 等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40(3): 46-55.
ZHANG Z H, FANG W, DU L L, et al. Semantic segmentation of remote sensing image based on encoder-decoder convolutional neural network[J]. Acta Optica Sinica, 2020, 40(3): 46-55.
[12] LI Y, CHEN W, HUANG X, et al. MFVNet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4): 1-14.
[13] ZHANG J, LIN S, DING L, et al. Multi-scale context aggregation for semantic segmentation of remote sensing images[J]. Remote Sensing, 2020, 12(4): 701.
[14] HE C, LI S, XIONG D, et al. Remote sensing image semantic segmentation based on edge information guidance[J]. Remote Sensing, 2020, 12(9): 1501.
[15] SUN X, SHI A, HUANG H, et al. BAS4 Net: boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5398-5413.
[16] CUI W, HE X, YAO M, et al. Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation[J]. Remote Sensing, 2021, 13(7): 1312.
[17] OUYANG S, LI Y. Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery[J]. Remote Sensing, 2021, 13(1): 119.
[18] ZHAO J, ZHANG D, SHI B, et al. Multi-source collaborative en-hanced for remote sensing images semantic segmentation[J]. Neurocomputing, 2022, 493: 76-90.
[19] YANG M D, TSENG H H, HSU Y C, et al. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images[J]. Remote Sensing, 2020, 12(4): 633.
[20] 石敏, 沈佳林, 易清明, 等. 快速超轻量城市交通场景语义分割[J]. 计算机科学与探索, 2022, 16(10): 2377-2386.
SHI M, SHEN J L, YI Q M, et al. Rapid and ultra-lightweight semantic segmentation in urban traffic scene[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2377-2386.
[21] LOBO TORRES D, QUEIROZ FEITOSA R, NIGRI HAPP P, et al. Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery[J]. Sensors, 2020, 20(2): 563.
[22] BOONPOOK W, TAN Y, XU B. Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry[J]. International Journal of Remote Sensing, 2021, 42(1): 1-19.
[23] KONG Y, ZHANG B, YAN B, et al. Affiliated fusion conditional random field for urban UAV image semantic segmentation[J]. Sensors, 2020, 20(4): 993.
[24] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[25] WANG W, XIE E, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolutions[J]. arXiv:2102.12122, 2021.
[26] ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6881-6890.
[27] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. arXiv:2105.15203, 2021.
[28] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[J]. arXiv:2103.
14030, 2021.
[29] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: a nested u-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2018: 3-11.
[30] LYU Y, VOSSELMAN G, XIA G S, et al. UAVid: a semantic segmentation dataset for UAV imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 108-119.
[31] CHEN Y, WANG Y, LU P, et al. Large-scale structure from motion with semantic constraints of aerial images[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Cham: Springer, , 2018: 347-359. |