[1] 张俊姝. 大棚甜瓜病害综合防治技术[J]. 吉林蔬菜, 2018(3): 37-38.
ZHANG J S. Integrated control technology of muskmelon diseases in greenhouses[J]. Jilin Vegetables, 2018(3): 37-38.
[2] 赵春梅, 陈柏杰, 金荣荣. 不同光照强度对甜瓜叶色黄化突变体幼苗生理指标的影响[J]. 蔬菜, 2019(5): 18-23.
ZHAO C M, CHEN B J, JIN R R. Effects of different illumination intensity on physiological indexes of yellow leaves melon mutant[J]. Vegetables, 2019(5): 18-23.
[3] 王亚红, 范迎宾, 李默莎, 等. 连续性床旁血液滤过联合解磷定 VitB6对急性有机磷农药中毒患者的效果及对心肌损伤炎症症状的影响[J]. 河北医学, 2023, 29(3): 461-466.
WANG Y H, FAN Y B, LI M S, et al. Effect of continuous bedside hemofiltration combined with desmophosphate and VitB6 on patients with acute organophosphorus pesticide poisoning and the effect on myocardial injuryand inflammatory symptoms[J]. Hebei Medical Journal, 2023, 29(3): 461-466.
[4] BHANGE M, HINGOLIWALA H A. Smart farming: pomegranate disease detection usingimage processing[J]. Procedia Computer Science, 2015, 58: 280-288.
[5] 鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152.
BAO W X, WU D Z, HU G S, et al. Rice pest identification in natural scene based on lightweight residual network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 145-152.
[6] 朱帅, 王金聪, 任洪娥, 等. 基于多特征融合的残差网络果树叶片病害识别[J]. 森林工程, 2022, 38(1): 108-114.
ZHU S, WANG J C, REN H E, et al. Fruit tree leaf disease recognition based on residual network and multi feature fusion[J]. Forest Engineering, 2022, 38(1): 108-114.
[7] 周孟然, 姚旭. 改进多尺度残差网络病害叶片图像识别[J]. 计算机工程与应用, 2023, 59(11): 195-202.
ZHOU M R, YAO X. Improved leaf image recognition of disease in multi-scale residual networks[J]. Computer Engineering and Applications, 2023, 59(11): 195-202.
[8] 秦丰, 刘东霞, 孙炳达, 等. 基于深度学习和支持向量机的4种苜蓿叶部病害图像识别[J]. 中国农业大学学报, 2017, 22(7): 123-133.
QIN F, LIU D X, SUN B D, et al. Image recognition of four different alfalfa leaf diseases based on deep learning and support vector machine[J]. Journal of China Agricultural University, 2017, 22(7): 123-133.
[9] 牛群峰, 刘江鹏, 王莉, 等. 基于残差网络与迁移学习的柑橘类型识别模型研究[J]. 现代农业科技, 2023(8): 73-76.
NIU Q F, LIU J P, WANG L, et al. Research on citrus species recognition model based on residual network and transfer learning[J]. Modern Agricultural Science and Technology, 2023(8): 73-76.
[10] 梁秀满, 肖寒. 基于SDD-YOLO的轻量级带钢缺陷实时检测算法[J]. 中国测试: 1-8[2023-05-05]. http://kns.cnki.net/kcms/detail/51.1714.TB.20230109.1648.002.html.
LIANG X M, XIAO H. Lightweight strip defect real-timedetection algorithm based on SDD-YOLO[J]. China Measurement & Test: 1-8[2023-05-05]. http://kns.cnki.net/kcms/detail/51.1714.TB.20230109.1648.002.html.
[11] TENG S, CHEN G F. Vibration signal-based structural damage detection through deep learning and digital image correlation[C]//Proceedings of the 7th International Conference on Environmental Science and Civil Engineering (ESCE 2021), 2021: 414-419.
[12] 刘广, 胡国玉, 古丽巴哈尔·托乎提, 等. 基于改进YOLOv3的葡萄叶部病虫害检测方法[J]. 微电子学与计算机, 2023, 40(2): 110-119.
LIU G, HU G Y, GULIBAHAER Tuohuti, et al. Detection of grape leaf diseases and insect pests based on improved YOLOv3[J]. Microelectronics & Computer, 2023, 40(2): 110-119.
[13] 孙道宗, 丁郑, 刘锦源, 等. 基于改进SqueezeNet模型的多品种茶树叶片分类方法[J]. 农业机械学报, 2023, 54(2): 223-230.
SUN D Z, DING Z, LIU J Y, et al. Classification method of multi-variety tea leaves based on improved SqueezeNet model[J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(2): 223-230.
[14] 王志强, 于雪莹, 杨晓婧, 等. 基于WGAN和MCA-MobileNet的番茄叶片病害识别[J]. 农业机械学报, 2023, 54(5): 244-252.
WANG Z Q, YU X Y, YANG X J, et al. Tomato leaf diseases recognition based on WGAN and MCA-MobileNet[J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(5): 244-252.
[15] CHENG X, ZHANG Y H, CHEN Y Q, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture, 2017, 141: 351-356.
[16] LI C F, WANG B P. Hand gesture recognitionin complex background based on improved deep residuallearning network[C]//2021 International Symposium on Computer Technology and Information Science (ISCTIS), Guilin, China, 2021: 239-245.
[17] THENMOZHI K, REDDY U S. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164: 104906.
[18] LIU D M, YANG H X, GONG Y J, et al. A recognition method of crop diseases and insect pests based on transfer learning and convolution neural network[J]. Mathematical Problems in Engineering, 2022(3): 1-10.
[19] ERUL E, I?IN A. ChatGPT ile Sohbetler: Turizmde ChatGPT nin ?nemi (Chats with ChatGPT: Importance of ChatGPT in Tourism)[J]. Journal of Tourism and Gastronomy Studies, 2023.
[20] 李哲, 潘维, 张赟. 基于深度卷积神经网络的植物病虫害识别[J]. 电子技术与软件工程, 2020(23): 194-195.
LI Z, PAN W, ZHANG Y. Plant disease and pest identification based on deep convolutional neural networks[J]. Electronic Technology and Software Engineering, 2020(23): 194-195.
[21] XU L X, CAO B X, ZHAO F J, et al. Wheat leaf disease identification based on deep learning algorithms[J]. Physiological and Molecular Plant Pathology, 2023, 123: 101940.
[22] MIQUE E L, PALAOAG T D. Rice pest and disease detection using convolutional neural network[C]//Proceedings of the 1st International Conference on Information Science and Systems. New York, NY, USA: ACM, 2018: 147-151.
[23] 胡文艺, 王洪坤, 杜育佳. 基于SE模块和ResNet的番茄病虫害识别方法[J]. 农业工程, 2022, 12(9): 33-40.
HU W Y, WANG H K, DU Y J. Tomato pest identification based on the SE module and ResNet[J]. Agricultural Engineering, 2022, 12(9): 33-40.
[24] QIAO Z N, YUAN X H, ZHANG R M, et al. Efficientdeep-narrow residual networks using dilated pooling foscene recognition[J]. Expert Systems with Applications, 2023, 234: 121018.
[25] 方晨晨, 石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用, 2020, 40(S1): 203-208.
FANG C C, SHI F H. Image recognition of tomato diseases based on improved deep residual network[J]. Journal of Computer Applications, 2020, 40(S1): 203-208. |