[1] CHEN Y, LIU Z, HUANG Y. The aging trend of Chinese population and the prediction of aging population in 2015-2050[J]. Chinese Journal of Social Medicine, 2018, 35(5): 480-483.
[2] CHEN Y, DU R, LUO K, et al. Fall detection system based on real-time pose estimation and SVM[C]//Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, 2021: 990-993.
[3] WANG X, ELLUL J, AZZOPARDI G. Elderly fall detection systems: a literature survey[J]. Frontiers in Robotics and AI, 2020, 7: 1-23.
[4] REN L, PENG Y. Research of fall detection and fall prevention technologies: a systematic review[J]. IEEE Access, 2019, 7: 77702-77722.
[5] 赵珍珍, 董彦如, 曹慧, 等. 老年人跌倒检测算法的研究现状[J]. 计算机工程与应用, 2022, 58(5): 50-65.
ZHAO Z Z, DONG Y R, CAO H, et al. Research status of elderly fall detecion algorithms[J]. Computer Engineering and Applications, 2022, 58(5): 50-65.
[6] 忽丽莎, 王素贞, 陈益强, 等. 基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报 (工学版), 2018, 52(9): 1717-1728.
HU L S, WANG S Z, CHEN Y Q, et al. Fall detection algorithms based on wearable device: a review[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(9): 1717-1728.
[7] ER P V, TAN K K. Wearable solution for robust fall detection[M]//Assistive technology for the elderly. [S.l.]: Academic Press, 2020: 81-105.
[8] BHATTACHARYA A, VAUGHAN R. Deep learning radar design for breathing and fall detection[J]. IEEE Sensors Journal, 2020, 20(9): 5072-5085.
[9] MA L, LIU M, WANG N, et al. Room-level fall detection based on ultra-wideband (UWB) monostatic radar and convolutional long short-term memory (LSTM)[J]. Sensors, 2020, 20(4): 1105.
[10] INTURI A R, MANIKANDAN V M, GARRAPALLY V. A novel vision-based fall detection scheme using keypoints of human skeleton with long short-term memory network[J]. Arabian Journal for Science and Engineering, 2023, 48(2): 1143-1155.
[11] DELGADO-ESCANO R, CASTRO F M, COZAR J R, et al. A cross-dataset deep learning-based classifier for people fall detection and identification[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105265.
[12] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[13] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 379-387.
[14] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[15] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[17] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[18] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[21] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275.
[22] MEI X, ZHOU X, XU F, et al. Human intrusion detection in static hazardous areas at construction sites: deep learning-based method[J]. Journal of Construction Engineering and Management, 2023, 149(1): 04022142.
[23] CHEN T, DING Z, LI B. Elderly fall detection based on improved YOLOv5s network[J]. IEEE Access, 2022, 10: 91273-91282.
[24] DING X, GUO Y, DING G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1911-1920.
[25] LI S, LI K, QIAO Y, et al. A multi-scale cucumber disease detection method in natural scenes based on YOLOv5[J]. Computers and Electronics in Agriculture, 2022, 202: 107363.
[26] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[28] LI Y, MA R, ZHANG R, et al. A tea buds counting method based on YOLOv5 and Kalman filter tracking algorithm[J]. Plant Phenomics, 2023, 5: 0030.
[29] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[30] 陈彦蓉, 高刃, 吴文欢, 等. 改进YOLOv5的新能源电池集流盘缺陷检测方法[J]. 电子测量与仪器学报, 2023, 37(5): 58-67.
CHEN Y R, GAO R, WU W H, et al. Defect detection method for new energy battery collector disc based on improved YOLOv5 network[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5): 58-67.
[31] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[32] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[33] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[34] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[35] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[36] HU J, LIU B, PENG S. Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33: 1117-1135.
[37] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[38] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[39] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning, 2015: 448-456.
[40] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[41] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[42] SONG G, LIU Y, WANG X. Revisiting the sibling head in object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11563-11572.
[43] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[44] 武历展, 王夏黎, 张倩, 等. 基于优化YOLOv5s的跌倒人物目标检测方法[J]. 图学学报, 2022, 43(5): 791-802.
WU L Z, WANG X L, ZHANG Q, et al. An object detection method of falling person based on optimized YOLOv5s[J]. Journal of Graphics, 2022, 43(5): 791-802. |