[1] NADEAU D, SEKINE S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007, 30(1): 3-26.
[2] HAO X J, JI Z, LI X H, et al. Construction and application of a knowledge graph[J]. Remote Sensing, 2021, 13(13): 2511.
[3] BOUZIANE A, BOUCHIHA D, DOUMI N, et al. Question answering systems: survey and trends[J]. Procedia Computer Science, 2015, 73: 366-375.
[4] STAHLBERG F. Neural machine translation: a review[J]. Journal of Artificial Intelligence Research, 2020, 69: 343-418.
[5] ZHANG Y, MENG F D, CHEN Y F, et al. Target-oriented fine-tuning for zero-resource named entity recognition[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021.
[6] 张海耿, 吴小茜, 姜世豪, 等. 不同养殖模式对南美白对虾生长性能及肠道菌群的影响[J]. 渔业现代化, 2023, 50(3): 27-35.
ZHANG H G, WU X Q, JIANG S H, et al. Growth performance and intestinal bacterial community structure of Litopenaeus vannamei under different cultivation systems[J]. Fishery Modernization, 2023, 50(3): 27-35.
[7] LIU Z H, XU Y, YU T Z, et al. CrossNER: evaluating cross-domain named entity recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 13452-13460.
[8] POIBEAU T, KOSSEIM L. Proper name extraction from non-journalistic texts[C]//Proceedings of the Eleventh Computational Linguistics in the Netherlands Meeting, Tilburg, November 3, 2000: 144-157.
[9] LIU P, GUO Y M, WANG F L, et al. Chinese named entity recognition: the state of the art[J]. Neurocomputing, 2022, 473: 37-53.
[10] XU J J, HE H F, SUN X, et al. Cross-domain and semisupervised named entity recognition in Chinese social media: a unified model[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(11): 2142-2152.
[11] ZHANG N Y, CHEN M S, BI Z, et al. CBLUE: a Chinese biomedical language understanding evaluation benchmark[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022.
[12] 杨崇洛, 生龙, 魏忠诚, 等. 新冠文本实体关系抽取及数据集构建方法研究[J]. 计算机工程与应用, 2023, 59(8): 97-104.
YANG C L, SHENG L, WEI Z C, et al. Research on COVID-19 text entity relation extraction and dataset construction methods[J]. Computer Engineering and Applications, 2023, 59(8): 97-104.
[13] 马凯, 田苗, 谭永健, 等. 基于四份区域地质调查报告构建的命名实体识别试验数据集研发[J]. 全球变化数据学报(中英文), 2022, 6(1): 78-84.
MA K, TIAN M, TAN Y J, et al. Development of a named entity recognition dataset based on four regional geological survey reports[J]. Journal of Global Change Data & Discovery, 2022, 6(1): 78-84.
[14] 谢志强, 刘金柱, 刘根辉. 古汉语嵌套命名实体识别数据集的构建和应用研究[C]//第二十一届中国计算语言学大会, 2022.
XIE Z Q, LIU J Z, LIU G H. Construction and application of classical Chinese nested named entity recognition data set[C]//Proceedings of the 21st Chinese National Conference on Computational Linguistics, 2022.
[15] BRANDSEN A, VERBERNE S, WANSLEEBEN M, et al. Creating a dataset for named entity recognition in the archaeology domain [C]//Proceedings of the Twelfth Language Resources and Evaluation Conference, 2020.
[16] LEITNER E, REHM G, MORENO-SCHNEIDER J. A dataset of German legal documents for named entity recognition[J]. arXiv:2003.13016, 2020.
[17] 曹煜成, 文国樑, 李卓佳, 等. 南美白对虾高效养殖与疾病防治技术[M]. 北京: 化学工业出版社, 2014.
CAO Y C, WEN G L, LI Z J. Efficient culture and disease control techniques of Penaeus vannamei[M]. Beijing: Chemical Industry Press, 2014.
[18] 林文辉, 苏跃朋. 池塘里的那些事儿: 养好池塘就是养好了南美白对虾[M]. 北京: 中国农业出版社, 2017.
LIN W H, SU Y P. What happens in a pond[M]. Beijing: China Agriculture Press, 2017.
[19] GOODMAN M W, GEORGI R, XIA F. PDF to-text reanalysis for linguistic data mining[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.
[20] 刘志轩, 王印庚, 张正, 等. 几种消毒剂对凡纳滨对虾致病性弧菌的杀灭作用[J]. 渔业科学进展, 2018, 39(3): 112-119.
LIU Z X, WANG Y G, ZHANG Z, et al. Germicidal effect of several disinfectants on the pathogenic bacteria of acute hepatopancreatic necrosis disease(AHPND) in litopenaeus vannamei[J]. Progress in Fishery Sciences, 2018, 39(3): 112-119.
[21] 刘梅, 原居林, 何海生, 等. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报, 2018, 24(4): 866-872.
LIU M, YUAN J L, HE H S, et al. Removal of nitrogen and phosphorus by eight strains of microalgae and their growth characteristics in Penaeus vannamei sewage[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 866-872.
[22] 周明月, 龚晨, 李正华, 等. 数据标注方法比较研究: 以依存句法树标注为例[J]. 清华大学学报(自然科学版), 2022, 62(5): 908-916.
ZHOU M Y, GONG C, LI Z H, et al. Comparison of data annotation approaches using dependency tree annotation as a case study[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(5): 908-916.
[23] COHEN J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46.
[24] GWET K L. Computing inter-rater reliability and its variance in the presence of high agreement[J]. British Journal of Mathematical and Statistical Psychology, 2008, 61(1): 29-48.
[25] PAN J, ZHANG C H, WANG H J, et al. A comparative study of Chinese named entity recognition with different segment representations[J]. Applied Intelligence, 2022, 52(11): 12457-12469.
[26] LIU Y J, CHE W X, QIN B, et al. Exploring segment representations for neural semi-Markov conditional random fields[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 813-824.
[27] RAMSHAW L A, MARCUS M P. Text chunking using transformation-based learning[M]//Natural language processing using very large corpora. Dordrecht: Springer Netherlands, 1999: 157-176.
[28] CHANG D J, CHEN M S, LIU C Z, et al. DiaKG: an annotated diabetes dataset for medical knowledge graph construction[C]//Proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction, 2021: 308-314.
[29] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[30] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270.
[31] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J].arXiv:1508.01991, 2015.
[32] 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6): 1793-1818.
E H H, ZHANG W J, XIAO S Q, et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818.
[33] LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2532-2541. |