[1] 张家亮. 2022年全球PCB发展现状及未来趋势[J]. 印制电路资讯, 2023(2): 27-34.
ZHANG J L. Global PCB development and future trends in 2022[J]. Printed Circuit Board Information, 2023(2): 27-34.
[2] 吴一全, 赵朗月, 苑玉彬, 等. 基于机器视觉的PCB缺陷检测算法研究现状及展望[J]. 仪器仪表学报, 2022, 43(8): 1-17.
WU Y Q, ZHAO L Y, YUAN Y B, et al. Research status and the prospect of PCB defect detection algorithm based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 1-17.
[3] AIAG, VDA. AIAG&VDA Failure mode and effects analysis (FMEA) handbook[M]. Michigan: America Automotive Industry Action Group, 2019.
[4] SINGHAL A. Introducing the knowledge graph: things, not strings[EB/OL]. (2012-05-16) [2024-03-04]. https://www. blog.google/products/search/introducing-knowledge-graph-things-not/.
[5] EHRMANN M, HAMDI A, LINHARES PONTES E, et al. Named entity recognition and classification in historical documents: a survey[J]. ACM Computing Surveys, 2023, 56(2): 1-47.
[6] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[8] LIU W, FU X Y, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 5847-5858.
[9] LI Z W, GUO B, HU Y C, et al. BERT-based Chinese NER with lexicon and position enhanced information adapter[C]//Proceedings of the IEEE 24th International Conference on High Performance Computing & Communications, 2023: 1618-1624.
[10] YU J Y, FENG X Y, LI J, et al. Named entity recognition in classical Chinese by lexicon enhancement[C]//Proceedings of the IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology, 2023: 463-468.
[11] MUTINDA J, MWANGI W, OKEYO G. Sentiment analysis of text reviews using lexicon-enhanced BERT embedding (LeBERT) model with convolutional neural network[J]. Applied Sciences, 2023, 13(3): 1445.
[12] 许驹雄, 李敏波, 刘孟珂, 等. 发动机故障领域知识图谱构建与应用[J]. 计算机系统应用, 2022, 31(7): 66-76.
XU J X, LI M B, LIU M K, et al. Construction and application of knowledge graph in diesel engine fault field[J]. Computer Systems & Applications, 2022, 31(7): 66-76.
[13] ZHOU B X, GAO D Q, YAN L C, et al. Research on key technologies for fault knowledge acquisition of power communication equipment[J]. Procedia Computer Science, 2021, 183: 479-485.
[14] 邱凌, 张安思, 张羽, 等. 面向无人机故障诊断的知识图谱构建应用方法[J]. 计算机工程与应用, 2023, 59(9): 280-288.
QIU L, ZHANG A S, ZHANG Y, et al. Application method of knowledge graph construction for UAV fault diagnosis[J]. Computer Engineering and Applications, 2023, 59(9): 280-288.
[15] 胡杰, 李源洁, 耿號, 等. 基于深度学习的汽车故障知识图谱构建[J]. 汽车工程, 2023, 45(1): 52-60.
HU J, LI Y, GENG H, et al. Construction of vehicle fault knowledge graph based on deep learning[J]. Automotive Engineering, 2023, 45(1): 52-60.
[16] 邓健峰, 王涛, 程良伦. 机器人故障诊断事理逻辑知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(13): 139-148.
DENG J F, WANG T, CHENG L L. Research on construction of event logic knowledge graph of robot fault diagnosis[J]. Computer Engineering and Applications, 2023, 59(13): 139-148.
[17] 乔骥, 王新迎, 闵睿, 等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报, 2020, 40(18): 5837-5849.
QIAO J, WANG X Y, MIN R, et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE, 2020, 40(18): 5837-5849.
[18] 武杰, 张安思, 吴茂东, 等. 知识图谱在装备故障诊断领域的研究与应用综述[J]. 计算机应用, 2024, 44(9): 2651-2659.
WU J, ZHANG A S, WU M D, et al. Overview of research and application of knowledge graph in equipment fault diagnosis[J]. Journal of Computer Applications, 2024, 44(9): 2651-2659.
[19] MA X Z, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1064-1074.
[20] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 3982-3992.
[21] WU W, JING X Y, DU W C. Learning dynamics of gradient descent optimization in deep neural networks[J]. Science China Information Sciences, 2021(64): 150102.
[22] SUN C, QIU X P, XU Y G, et al. How to fine-tune BERT for text classification?[C]//Proceedings of the 18th China National Conference on Chinese Computational Linguistics, 2019: 194-206.
[23] GOWRI K, SUNIL M, YADAV R K. Explore deep learning trends by decoding activated networks[C]//Proceedings of the International Conference on Advances in Computation, Communication and Information Technology, 2023: 778-783. |