计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 156-165.DOI: 10.3778/j.issn.1002-8331.2407-0164

• 理论与研发 • 上一篇    下一篇

将SNN部署到类脑处理器的映射优化算法研究

陈奥新,陈亮,李千鹏,王智超,徐东君   

  1. 1.中国科学院 自动化研究所, 北京 100190 
    2.中国科学院大学 人工智能学院, 北京 101408
  • 出版日期:2025-06-01 发布日期:2025-05-30

Research on Mapping Optimization Algorithms for Deploying SNN to Brain-Inspired Processors

CHEN Aoxin, CHEN Liang, LI Qianpeng, WANG Zhichao, XU Dongjun   

  1. 1.Institute of Automation Chinese Academy, of Sciences, Beijing 100190, China 
    2.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 101408, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 近年来,具有生物合理性和能效优势的脉冲神经网络(SNN)受到广泛关注。然而,目前在类脑处理器上部署SNN的映射方案存在通信延迟高、拥塞严重、能耗高和节点连接性不足等问题,从而削弱了其实用性和执行效率。为解决这些问题,提出了基于KL(Kernighan-Lin)和波尔兹曼退火差分进化(Boltzmann anneal differential evolution,BADE)的改进部署算法,用于将SNN映射到资源受限的类脑处理器上。该算法包括两个步骤:分区和映射。在分区阶段,通过在递归KL算法中引入全局优化策略(GRBKL)来最小化集群之间的通信延迟;在映射阶段,提出利用吸引子导向的BADE算法(BAFDE)寻找最小化通信延迟和最大拥塞的分配方式。用五个SNN实例对该算法进行了评估,结果表明,与SNEAP和SpiNeMap等方法相比,所提出的算法显著降低了通信延迟(分别降低了55.41%和94.73%)和最大拥塞(分别降低了81.27%和97.79%)。

关键词: 脉冲神经网络(SNN), 类脑处理器, 启发式算法, 片上网络(NOC)

Abstract: In recent years, spiking neural network (SNN), which offers biological plausibility and energy efficiency, has garnered widespread attention. However, current mapping schemes for deploying SNN on neuromorphic processors face issues such as high communication delays, severe congestion, high energy consumption, and insufficient node connectivity, thereby reducing their practicality and execution efficiency. To address these problems, an improved deployment algorithm based on KL (Kernighan-Lin) and BADE(Boltzmann anneal differential evolution) has been proposed to map SNN onto resource-constrained neuromorphic processors. This algorithm comprises two steps: partitioning and mapping. In the partitioning phase, a global optimization strategy (GRBKL) is introduced into the recursive KL algorithm to minimize communication delay between clusters. In the mapping phase, an attractor-guided BADE algorithm(BAFDE)is proposed to find an allocation scheme that minimizes communication delay and maximum congestion. Finally, the algorithm is evaluated using five SNN instances, and the results show that, compared to methods like SNEAP and SpiNeMap, the proposed algorithm significantly reduces communication delay (by 55.41% and 94.73%, respectively) and maximum congestion (by 81.27% and 97.79%, respectively).

Key words: spiking neural network(SNN), brain-inspired processor, heuristic algorithm, network-on-chip(NOC)