[1] 苏赋, 吕沁, 罗仁泽. 基于深度学习的图像分类研究综述[J]. Telecommunications Science, 2019, 35(11): 58-74.
SU B, LYU Q, LUO R Z. Review of image classification based on deep learning[J]. Telecommunications Science, 2019, 35(11): 58-74.
[2] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445-1465.
XI X F, ZHOU G D. A Survey on deep learning for natural language processing[J]. Acta Automatica Sinica, 2016, 42(10): 1445-1465.
[3] DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: a neuro-morphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82-99.
[4] ORCHARD G, FRADY E P, RUBIN D B D, et al. Efficient neuromorphic signal processing with Loihi 2[C]//Proceedings of the IEEE Workshop on Signal Processing Systems, 2021: 254-259.
[5] MEROLLA P A, ARTHUR J V, ALVAREZ-ICAZA R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345: 668-673.
[6] FURBER S B, GALLUPPI F, TEMPLE S, et al. The spinnaker project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665.
[7] PEI J, DENG L, MA C, et al. Multi-grained system integration for hybrid-paradigm brain-inspired computing[J]. Science China Information Sciences, 2023, 66(4): 272-285.
[8] KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs[J]. The Bell System Technical Journal, 1970, 49(2): 291-307.
[9] LI H, WANG H, WANG L, et al. A modified Boltzmann annealing differential evolution algorithm for inversion of directional resistivity logging-while-drilling measurements [J]. Journal of Petroleum Science and Engineering, 2020, 188: 106916.
[10] DAYAN P, ABBOTT L F. Theoretical neuroscience: computational and mathematical modeling of neural systems[M]. Cambridge: MIT Press, 2005.
[11]张翰林. 众核类脑计算嵌入式系统设计与实现[D]. 天津: 天津大学, 2021.
ZHANG H L. Design and implementation of multi-core brain-inspired computing embedded system[D]. Tianjin: Tianjin University, 2021.
[12] 杜加琴. NOC 基于 2D MESH 的路由算法的比较[J]. 电子技术, 2012, 39(3): 9-11.
DU J Q. Comparison of 2D MESH based routing algorithm in NOC[J]. Electronic Technology, 2012, 39(3): 9-11.
[13] LIN C K, WILD A, CHINYA G N, et al. Mapping spiking neural networks onto a manycore neuromorphic architecture[C]//Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,2018:78-89.
[14] AMIR A, DATTA P, RISK W P, et al. Cognitive computing programming paradigm: a corelet language for composing networks of neurosynaptic cores[C]//Proceedings of the International Joint Conference on Neural Networks, 2013: 1-10.
[15] GALLUPPI F, DAVIES S, RAST A, et al. A hierachical configuration system for a massively parallel neural hardware platform[C]//Proceedings of the 9th Conference on Computing Frontiers, 2012: 183-192.
[16] DENG L, WANG G, LI G, et al. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2228-2246.
[17] SONG S, CHONG H, BALAJI A, et al. DFSynthesizer: dataflow-based synthesis of spiking neural networks to neuromorphic hardware[J]. ACM Transactions on Embedded Computing Systems, 2022, 21(3): 1-35.
[18] BALAJI A, DAS A. A framework for the analysis of throughput-constraints of SNNs on neuromorphic hardware[C]//Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2019: 193-196.
[19] VARSHIKA M L, BALAJI A, CORRADI F, et al. Design of many-core big little μBrains for energy-efficient embedded neuromorphic computing[C]//Proceedings of the Design, Automation & Test in European Conference & Exhibition , 2022: 1011-1016.
[20] ZHANG J, HUO D, ZHANG J, et al. ANP-I: a 28-nm 1.5-pJ/SOP asynchronous spiking neural network processor enabling Sub-0.1 μJ/Sample on-chip learning for edge-AI applications[J]. IEEE Journal of Solid-State Circuits 2024, 59(8): 2717-2729.
[21] DAS A, WU Y, HUYNH K, et al. Mapping of local and global synapses on spiking neuromorphic hardware[C]// Proceedings of the Design, Automation & Test in European Conference & Exhibition, 2018: 1217-1222.
[22] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995: 39-43.
[23] BALAJI A, DAS A, WU Y, et al. Mapping spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 28 (1): 76-86.
[24] JI Y, ZHANG Y H, LI S C, et al. NEUTRAMS: neural network transformation and co-design under neuromorphic hardware constraints[C]//Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture, 2016: 1-13.
[25] LI S, GUO S, ZHANG L, et al. SNEAP: a fast and efficient toolchain for mapping large-scale spiking neural network onto NoC-based neuromorphic platform[C]//Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020: 9-14.
[26] STEINBRUNN M, MOERKOTTE G, KEMPER A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6: 191-208.
[27] 高鹰, 谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用, 2004, 40(1): 47-50.
GAO Y, XIE S L. Particle swarm optimization algorithms based on simulated annealing[J]. Computer Engineering and Applications, 2004, 40(1): 47-50.
[28] XIAO C, CHEN J, WANG L. Optimal mapping of spiking neural network to neuromorphic hardware for edge-AI[J]. Sensors, 2022, 22(19): 7248.
[29] AARTS E H L, KORST J H M. Boltzmann machines as a model for parallel annealing[J]. Algorithmica, 1991, 6: 437-465.
[30] 刘洪普, 侯向丹. 模拟退火算法中关键参数的研究[J]. 计算机工程与科学, 2008, 30(10): 55-57.
LIU H P, HOU X D. Research on the key parameters in the simulated annealing algorithm[J]. Computer Engineering & Science, 2008, 30(10): 55-57.
[31] 陈颖, 林盈, 胡晓敏. 多种群多策略的并行差分进化算法[J]. 计算机科学与探索, 2014, 8(12): 1502-1510.
CHEN Y, LIN Y, HU X M. Parallel differential evolution with multi-population and multi-strategy[J]. Journal of Frontiers of Computer Science & Technology, 2014, 8(12): 1502-1510.
[32] XIAO C, HE X, YANG Z, et al. Hierarchical mapping of large-scale spiking convolutional neural networks onto resource-constrained neuromorphic processor[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(5): 1442-1455.
[33] JAIN R, RAMAKRISHNAN K, CHIU D M. Congestion avoidance in computer networks with a connectionle ss network layer[C]//Proceedings of the Computer Networking Symposium, 1998: 134-143.
[34] 蒋万春, 李昊阳, 陈晗瑜, 等. 网络拥塞控制方法综述[J]. 软件学报, 2024, 35(8): 3952-3979.
JIANG W C, LI H Y, CHEN H Y, et al. Survey on network congestion control algorithms[J]. Journal of Software, 2024, 35(8): 3952-3979. |